固體物理學

固體物理學

固體物理學,是研究固體的性質、它的微觀結構及其各種內部運動,以及這種微觀結構和內部運動同固體的巨觀性質的關係的學科。 

概述

固體物理學固體物理學
固體物理學,是研究固體物質的物理性質、微觀結構、構成物質的各種粒子的運動形態,及其相互關係的科學,它是物理學中內容極豐富、套用極廣泛的分支學科,固體物理對於技術的發展有很多重要的套用,電晶體發明以後,積體電路技術迅速發展,電子學技術、計算技術以至整個信息產業也隨之迅速發展。其經濟影響和社會影響是革命性的。

研究歷史

早在18世紀R.J.阿維對晶體外部的幾何規則性就有一定的認識,後來A.布喇菲在1850年導出14種點陣。E.C.費奧多羅夫在1890年和A.M.熊夫利在1891年以及W.巴洛在1895年各自建立了晶體對稱性的群理論。這為固體的理論發展找到基本的數學影響深遠。

1912年M.von勞厄等發現X射線通過晶體的衍射現象,證實了晶體內部原子周期性排列的結構。加上後來布喇格父子1913年的工作,建立了晶體結構分析的基礎。對於磁有序結構的晶體,增加了自鏇磁矩有序排列的對稱性,直到50年代Α.Β.舒布尼科夫才建立了磁有序晶體的對稱群理論。

第二次世界大戰後發展的中子衍射技術,是磁性晶體結構分析的重要手段。70年代出現了高分辨電子顯微鏡點陣成像技術,在致力於晶體結構的觀察方面有所進步。60年代起人們開始研究在超高真空條件下晶體解理後表面的原子結構。20年代末發現的低能電子衍射技術在60年代經過改善成為研究晶體表面的有力工具。近年來發展的掃描隧道顯微鏡,可以相當高的解析度探測表面的原子結構。

主要特點

固體物理學固體物理學
在固體中,粒子之間種種各具特點的耦合方式,導致粒子具有特定的集體運動形式和個體運動形式,造成不同的固體有千差萬別的物理性質。W.R.哈密頓在1839年討論了排成陣列的質點系的微振動,人們稱此模式為電磁耦合場振盪,相應的能量量子稱為極化激元。

在很低的溫度,由於熱擾動強度降低,在某些固體中出現巨觀量子現象,某些半導體中的電子-空穴液滴,以及若干二維體系中的分數量子霍耳效應等都是巨觀的量子現象。

通過巡遊電子耦合趨於平行排列,產生鐵磁性。居里溫度很低的弱鐵磁體,其中沒有局域磁矩,它的鐵磁性同自鏇密度的起伏有關。過渡金屬的鐵磁性是一個困難又複雜的多體問題,還沒有比較滿意的理論處理。  
相變在固體物理學中相變占有重要地位,它涉及熔化、凝聚、凝固、晶體生長、蒸發、相平衡、相變動力學、臨界現象等,某些固體其特徵物性沿一定方向周期變化,此周期與點陣的周期可能通約或不可通約,分別形成有公度相和無公度相。  

晶體缺陷

實際晶體或多或少存在各種雜質和缺陷。依照傳統的分類有:點缺陷、線缺陷(見位錯)和面缺陷。它們對固體的物性以及功能材料的技術性能都起重要的作用。半導體的電學、發光學等性質依賴於其中的雜質和缺陷。大規模積體電路的工藝中控制(和利用)雜質和缺陷是極為重要的。  

硬鐵磁體、硬超導體、高強度金屬等材料的功能雖然很不同,但其技術性能之所以強或硬,卻都依賴於材料中一種缺陷的運動。在硬鐵磁體中這缺陷是磁疇壁(面缺陷),在超導體中它是量子磁通線,在高強度金屬中它是位錯線,採取適當工藝使這些缺陷在材料的微結構上被釘住不動,有益於提高其技術性能。

高分辨電子顯微術正促使人們在更深的層次上來研究雜質、缺陷和它們的複合物。電子順磁共振、穆斯堡爾效應、正電子湮沒技術等已成為研究雜質和缺陷的有力手段。在理論上藉助於拓撲學和非線性方程的解,正為缺陷的研究開闢新的方向(見晶體缺陷)。

界面有固體-固體、固體-液體、固體-氣體界面之分。固體器件的基礎是在界面發生的物理過程,隨著微電子技術發展,器件的尺寸日益縮小,表面和界面的物理效應更加突出。特別是矽場效應管的矽-二氧化矽界面形成表面勢阱,在其中的電子構成二維運動的電子氣,具有獨特的性質,包括電子態局域化和 K.von克利青在1980年發現的量子霍耳效應以及D.C.崔琦在1981年發現的分數量子霍耳效應,涉及固體物理基本問題的現象。許多電化學過程發生在固體-電解液界面,腐蝕則常發生於固體-氣體和固體-液體界面,因此界面物理和表面物理一樣具有巨大的實際意義。

非晶態固體

固體物理學固體物理學
非晶態固體的物理性質同晶體有很大差別,這同它們的原子結構、電子態以及各種微觀過程有密切聯繫。從結構上來分,非晶態固體有兩類(見無序體系)。一類是成分無序,在具有周期性的點陣位置上隨機分布著不同的原子(如二元無序合金)或者不同的磁矩(如無序磁性晶體)。在這類體系中物理量不再有平移對稱性。另一類是結構無序,表征長程式的周期性完全破壞,點陣失去意義。  

非晶態合金具有特殊的物理性質。非晶態磁性固體可以在較低的外磁場下達到飽和,磁損耗減小。所以非晶態合金具有多方面用途,無序體系是一個複雜的新領域,非晶態固體實際上是一個亞穩態。

亞穩狀態

無序體系是一個複雜的新領域,非晶態固體實際上是一個亞穩態。新的實驗條件和技術日新月異,為固體物理不斷開拓出新的研究領域。極低溫、超高壓、強磁場等極端條件、超高真空技術、表面能譜術、材料製備的新技術、同步輻射技術、核物理技術、雷射技術、光散射效應、各種粒子束技術、電子顯微術、穆斯堡爾效應、正電子湮沒技術、磁共振技術等現代化實驗手段,使固體物理性質的研究不斷向深度和廣度發展。
由於固體物理本身是微電子技術、光電子學技術、能源技術、材料科學等技術學科的基礎,也由於固體物理學科內在的因素,固體物理的研究論文已占物理學中研究論文三分之一以上。同時,固體物理學的成就和實驗手段對化學物理、催化學科、生命科學、地學等的影響日益增長,正在形成新的交叉領域。

物理學知識2

物理學(PHYSICS)是研究物質世界最基本的結構、最普遍的相互作用、最一般的運動規律及所使用的實驗手段和思維方法的自然科學,簡稱物理。物理學是人們對無生命自然界中物質的轉變的知識做出規律性的總結。

物理學

相關詞條

相關搜尋

熱門詞條

聯絡我們