步進電機

步進電機

步進電機是將電脈衝信號轉變為角位移或線位移的開環控制元件。在非超載的情況下,電機的轉速、停止的位置只取決於脈衝信號的頻率和脈衝數,而不受負載變化的影響,即給電機加一個脈衝信號,電機則轉過一個步距角。

基本信息

步進電機是將電脈衝信號轉變為角位移或線位移的開環控制元件。在非超載的情況下,電機的轉速、停止的位置只取決於脈衝信號的頻率和脈衝數,而不受負載變化的影響,即給電機加一個脈衝信號,電機則轉過一個步距角。這一線性關係的存在,加上步進電機只有周期性的誤差而無累積誤差等特點。使得在速度、位置等控制領域用步進電機來控制變的非常的簡單。

雖然步進電機已被廣泛地套用,但步進電機並不能象普通的直流電機,交流電機在常規下使用。它必須由雙環形脈衝信號、功率驅動電路等組成控制系統方可使用。因此用好步進電機卻非易事,它涉及到機械、電機、電子及計算機等許多專業知識。

簡介

步進電機步進電機

目前,生產步進電機的廠家的確不少,但具有專業技術人員,能夠自行開發,研製的廠家卻非常少,大部分的廠家只一、二十人,連最基本的設備都沒有。僅僅處於一種盲目的仿製階段。這就給戶在產品選型、使用中造成許多麻煩。簽於上述情況,我們決定以廣泛的感應子式步進電機為例。敘述其基本工作原理。望能對廣大用戶在選型、使用、及整機改進時有所幫助。

工作原理

步進電機
步進電機

步進電機是將電脈衝信號轉變為角位移或線位移的開環控制元件。在非超載的情況下,電機的轉速、停止的位置只取決於脈衝信號的頻率和脈衝數,而不受負載變化的影響,即給電機加一個脈衝信號,電機則轉過一個步距角。這一線性關係的存在,加上步進電機只有周期性的誤差而無累積誤差等特點。使得在速度、位置等控制領域用步進電機來控制變的非常的簡單。

雖然步進電機已被廣泛地套用,但步進電機並不能象普通的直流電機,交流電機在常規下使用。它必須由雙環形脈衝信號、功率驅動電路等組成控制系統方可使用。因此用好步進電機卻非易事,它涉及到機械、電機、電子及計算機等許多專業知識。

目前,生產步進電機的廠家的確不少,但具有專業技術人員,能夠自行開發,研製的廠家卻非常少,大部分的廠家只一、二十人,連最基本的設備都沒有。僅僅處於一種盲目的仿製階段。這就給用戶在產品選型、使用中造成許多麻煩。步進電機是將電脈衝信號轉變為角位移或線位移的一種開環線性執行元件,具有無累積誤差、成本低、控制簡單特點。產品從相數上分有二、三、四、五相,從步距角上分有0.9°/1.8°、0.36°/0.72°,從規格上分有口42~φ130,從靜力矩上分有0.1N·M~40N·M。

簽於上述情況,我們決定以廣泛的感應子式步進電機為例。敘述其基本工作原理。望能對廣大用戶在選型、使用、及整機改進時有所幫助。

二、感應子式步進電機工作原理

(一)反應式步進電機原理
由於反應式步進電機工作原理比較簡單。下面先敘述三相反應式步進電機原理。

1、結構:

電機轉子均勻分布著很多小齒,定子齒有三個勵磁繞阻,其幾何軸線依次分別與轉子齒軸線錯開。

0、1/3て、2/3て,(相鄰兩轉子齒軸線間的距離為齒距以て表示),即A與齒1相對齊,B與齒2向右錯開1/3て,C與齒3向右錯開2/3て,A'與齒5相對齊,(A'就是A,齒5就是齒1)下面是定轉子的展開圖:
2、鏇轉:

如A相通電,B,C相不通電時,由於磁場作用,齒1與A對齊,(轉子不受任何力以下均同)。

如B相通電,A,C相不通電時,齒2應與B對齊,此時轉子向右移過1/3て,此時齒3與C偏移為1/3て,齒4與A偏移(て-1/3て)=2/3て。如C相通電,A,B相不通電,齒3應與C對齊,此時轉子又向右移過1/3て,此時齒4與A偏移為1/3て對齊。

如A相通電,B,C相不通電,齒4與A對齊,轉子又向右移過1/3て

這樣經過A、B、C、A分別通電狀態,齒4(即齒1前一齒)移到A相,電機轉子向右轉過一個齒距,如果不斷地按A,B,C,A……通電,電機就每步(每脈衝)1/3て,向右鏇轉。如按A,C,B,A……通電,電機就反轉。

由此可見:電機的位置和速度由導電次數(脈衝數)和頻率成一一對應關係。而方向由導電順序決定。

不過,出於對力矩、平穩、噪音及減少角度等方面考慮。往往採用A-AB-B-BC-C-CA-A這種導電狀態,這樣將原來每步1/3て改變為1/6て。甚至於通過二相電流不同的組合,使其1/3て變為1/12て,1/24て,這就是電機細分驅動的基本理論依據。

不難推出:電機定子上有m相勵磁繞阻,其軸線分別與轉子齒軸線偏移1/m,2/m……(m-1)/m,1。並且導電按一定的相序電機就能正反轉被控制——這是步進電機鏇轉的物理條件。只要符合這一條件我們理論上可以製造任何相的步進電機,出於成本等多方面考慮,市場上一般以二、三、四、五相為多。

3、力矩:電機一旦通電,在定轉子間將產生磁場(磁通量Ф)當轉子與定子錯開一定角度產生力

F與(dФ/dθ)成正比
S其磁通量Ф=Br*S
Br為磁密,S為導磁面積
F與L*D*Br成正比
L為鐵芯有效長度,D為轉子直徑
Br=N·I/R
N·I為勵磁繞阻安匝數(電流乘匝數)R為磁阻。
力矩=力*半徑
力矩與電機有效體積*安匝數*磁密成正比(只考慮線性狀態)
因此,電機有效體積越大,勵磁安匝數越大,定轉子間氣隙越小,電機力矩越大,反之亦然。
(二)感應子式步進電機

1、特點:

感應子式步進電機與傳統的反應式步進電機相比,結構上轉子加有永磁體,以提供軟磁材料的工作點,而定子激磁只需提供變化的磁場而不必提供磁材料工作點的耗能,因此該電機效率高,電流小,發熱低。因永磁體的存在,該電機具有較強的反電勢,其自身阻尼作用比較好,使其在運轉過程中比較平穩、噪音低、低頻振動小。

感應子式步進電機某種程度上可以看作是低速同步電機。一個四相電機可以作四相運行,也可以作二相運行。(必須採用雙極電壓驅動),而反應式電機則不能如此。例如:四相,八相運行(A-AB-B-BC-C-CD-D-DA-A)完全可以採用二相八拍運行方式.不難發現其條件為C=,D=.

一個二相電機的內部繞組與四相電機完全一致,小功率電機一般直接接為二相,而功率大一點的電機,為了方便使用,靈活改變電機的動態特點,往往將其外部接線為八根引線(四相),這樣使用時,既可以作四相電機使用,可以作二相電機繞組串聯或並聯使用。

2、分類

感應子式步進電機以相數可分為:二相電機、三相電機、四相電機、五相電機等。以機座號(電機外徑)可分為:42BYG(BYG為感應子式步進電機代號)、57BYG、86BYG、110BYG、(國際標準),而像70BYG、90BYG、130BYG等均為國內標準。

3、步進電機的靜態指標術語

相數:產生不同對極N、S磁場的激磁線圈對數。常用m表示。

拍數:完成一個磁場周期性變化所需脈衝數或導電狀態用n表示,或指電機轉過一個齒距角所需脈衝數,以四相電機為例,有四相四拍運行方式即AB-BC-CD-DA-AB,四相八拍運行方式即A-AB-B-BC-C-CD-D-DA-A.

步距角:對應一個脈衝信號,電機轉子轉過的角位移用θ表示。θ=360度(轉子齒數J*運行拍數),以常規二、四相,轉子齒為50齒電機為例。四拍運行時步距角為θ=360度/(50*4)=1.8度(俗稱整步),八拍運行時步距角為θ=360度/(50*8)=0.9度(俗稱半步)。

定位轉矩:電機在不通電狀態下,電機轉子自身的鎖定力矩(由磁場齒形的諧波以及機械誤差造成的)

靜轉矩:電機在額定靜態電作用下,電機不作鏇轉運動時,電機轉軸的鎖定力矩。此力矩是衡量電機體積(幾何尺寸)的標準,與驅動電壓及驅動電源等無關。

雖然靜轉矩與電磁激磁安匝數成正比,與定齒轉子間的氣隙有關,但過份採用減小氣隙,增加激磁安匝來提高靜力矩是不可取的,這樣會造成電機的發熱及機械噪音。

4、步進電機動態指標及術語:

1、步距角精度:步進電機每轉過一個步距角的實際值與理論值的誤差。用百分比表示:誤差/步距角*100%。不同運行拍數其值不同,四拍運行時應在5%之內,八拍運行時應在15%以內。

2、失步:電機運轉時運轉的步數,不等於理論上的步數。稱之為失步。

3、失調角:轉子齒軸線偏移定子齒軸線的角度,電機運轉必存在失調角,由失調角產生的誤差,採用細分驅動是不能解決的。

4、最大空載起動頻率:電機在某種驅動形式、電壓及額定電流下,在不加負載的情況下,能夠直接起動的最大頻率。
5、最大空載的運行頻率:電機在某種驅動形式,電壓及額定電流下,電機不帶負載的最高轉速頻率。

6、運行矩頻特性:電機在某種測試條件下測得運行中輸出力矩與頻率關係的曲線稱為運行矩頻特性,這是電機諸多動態曲線中最重要的,也是電機選擇的根本依據。如下圖所示:

其它特性還有慣頻特性、起動頻率特性等。電機一旦選定,電機的靜力矩確定,而動態力矩卻不然,電機的動態力矩取決於電機運行時的平均電流(而非靜態電流),平均電流越大,電機輸出力矩越大,即電機的頻率特性越硬。

7、電機的共振點:步進電機均有固定的共振區域,二、四相感應子式步進電機的共振區一般在180-250pps之間(步距角1.8度)或在400pps左右(步距角為0.9度),電機驅動電壓越高,電機電流越大,負載越輕,電機體積越小,則共振區向上偏移,反之亦然,為使電機輸出電矩大,不失步和整個系統的噪音降低,一般工作點均應偏移共振區較多。

8、電機正反轉控制:當電機繞組通電時序為AB-BC-CD-DA或()時為正轉,通電時序為DA-CA-BC-AB或()時為反轉。

三、驅動控制系統組成

使用、控制步進電機必須由環形脈衝,功率放大等組成的控制系統,其方框圖如下:
1、脈衝信號的產生。

脈衝信號一般由單片機或CPU產生,一般脈衝信號的占空比為0.3-0.4左右,電機轉速越高,占空比則越大。

2、信號分配

我廠生產的感應子式步進電機以二、四相電機為主,二相電機工作方式有二相四拍和二相八拍二種,具體分配如下:二相四拍為,步距角為1.8度;二相八拍為,步距角為0.9度。四相電機工作方式也有二種,四相四拍為AB-BC-CD-DA-AB,步距角為1.8度;四相八拍為AB-B-BC-C-CD-D-AB,(步距角為0.9度)。

3、功率放大

功率放大是驅動系統最為重要的部分。步進電機在一定轉速下的轉矩取決於它的動態平均電流而非靜態電流(而樣本上的電流均為靜態電流)。平均電流越大電機力矩越大,要達到平均電流大這就需要驅動系統儘量克服電機的反電勢。因而不同的場合採取不同的的驅動方式,到目前為止,驅動方式一般有以下幾種:恆壓、恆壓串電阻、高低壓驅動、恆流、細分數等。

4、細分驅動器

在步進電機步距角不能滿足使用的條件下,可採用細分驅動器來驅動步進電機,細分驅動器的原理是通過改變相鄰(A,B)電流的大小,以改變合成磁場的夾角來控制步進電機運轉的。

四、步進電機的套用

(一)步進電機的選擇

步進電機有步距角(涉及到相數)、靜轉矩、及電流三大要素組成。一旦三大要素確定,步進電機的型號便確定下來了。
1、步距角的選擇

電機的步距角取決於負載精度的要求,將負載的最小解析度(當量)換算到電機軸上,每個當量電機應走多少角度(包括減速)。電機的步距角應等於或小於此角度。目前市場上步進電機的步距角一般有0.36度/0.72度(五相電機)、0.9度/1.8度(二、四相電機)、1.5度/3度(三相電機)等。

2、靜力矩的選擇

步進電機的動態力矩一下子很難確定,我們往往先確定電機的靜力矩。靜力矩選擇的依據是電機工作的負載,而負載可分為慣性負載和摩擦負載二種。單一的慣性負載和單一的摩擦負載是不存在的。直接起動時(一般由低速)時二種負載均要考慮,加速起動時主要考慮慣性負載,恆速運行進只要考慮摩擦負載。一般情況下,靜力矩應為摩擦負載的2-3倍內好,靜力矩一旦選定,電機的機座及長度便能確定下來(幾何尺寸)
3、電流的選擇

靜力矩一樣的電機,由於電流參數不同,其運行特性差別很大,可依據矩頻特性曲線圖,判斷電機的電流(參考驅動電源、及驅動電壓)
4、力矩與功率換算

步進電機一般在較大範圍內調速使用、其功率是變化的,一般只用力矩來衡量,力矩與功率換算如下:

P=Ω·M Ω=2π·n/60 P=2πnM/60

其P為功率單位為瓦,Ω為每秒角速度,單位為弧度,n為每分鐘轉速,M為力矩單位為牛頓·米

P=2πfM/400(半步工作)

其中f為每秒脈衝數(簡稱PPS)

(二)、套用中的注意點

1、步進電機套用於低速場合---每分鐘轉速不超過1000轉,(0.9度時6666PPS),最好在1000-3000PPS(0.9度)間使用,可通過減速裝置使其在此間工作,此時電機工作效率高,噪音低。

2、步進電機最好不使用整步狀態,整步狀態時振動大。

3、由於歷史原因,只有標稱為12V電壓的電機使用12V外,其他電機的電壓值不是驅動電壓伏值,可根據驅動器選擇驅動電壓(建議:57BYG採用直流24V-36V,86BYG採用直流50V,110BYG採用高於直流80V),當然12伏的電壓除12V恆壓驅動外也可以採用其他驅動電源,不過要考慮溫升。

4、轉動慣量大的負載應選擇大機座號電機。

5、電機在較高速或大慣量負載時,一般不在工作速度起動,而採用逐漸升頻提速,一電機不失步,二可以減少噪音同時可以提高停止的定位精度。

6、高精度時,應通過機械減速、提高電機速度,或採用高細分數的驅動器來解決,也可以採用5相電機,不過其整個系統的價格較貴,生產廠家少,其被淘汰的說法是外行話。

7、電機不應在振動區內工作,如若必須可通過改變電壓、電流或加一些阻尼的解決。

8、電機在600PPS(0.9度)以下工作,應採用小電流、大電感、低電壓來驅動。

9、應遵循先選電機後選驅動的原則。

五、其他說明

有關低頻振動、升降速、機械共振、工作往復運動的誤差、平面圓弧X、Y插補誤差以及其他問題。具體解決辦法恕不便在此敘述,我廠用戶可來電諮詢,可根據具體情況解決。

不同廠家的電機在設計、使用材料及加工工藝方面差別很大,選用步進電機應注重可靠性而輕性能、重品質而輕價格。

最好採用同一生產廠家的控制器、驅動器和電機。這樣便於最終客戶的維護。

分類

1、永磁式步進電機

永磁式步進電機一般為兩相,轉矩和體積較小,步進角一般為7.5度或15度;

2、反應式步進電機

反應式步進電機一般為三相,可實現大轉矩輸出,步進角一般為1.5度,但噪聲和振動都很大。反應式步進電機的轉子磁路由軟磁材料製成,定子上有多相勵磁繞組,利用磁導的變化產生轉矩。

3、混合式步進電機

混合式步進電機是指混合了永磁式和反應式的優點。它又分為兩相和五相:兩相步進角一般為1.8度而五相步進角一般為0.72度。這種步進電機的套用最為廣泛。

特點

步進電機
步進電機
1、一般步進電機的精度為步進角的3-5%,且不累積。

2、步進電機外表允許的最高溫度。步進電機溫度過高首先會使電機的磁性材料退磁,從而導致力矩下降乃至於失步,因此電機外表允許的最高溫度應取決於不同電機磁性材料的退磁點;一般來講,磁性材料的退磁點都在攝氏130度以上,有的甚至高達攝氏200度以上,所以步進電機外表溫度在攝氏80-90度完全正常。

3、步進電機的力矩會隨轉速的升高而下降。 當步進電機轉動時,電機各相繞組的電感將形成一個反向電動勢;頻率越高,反向電動勢越大。在它的作用下,電機隨頻率(或速度)的增大而相電流減小,從而導致力矩下降。 

4、步進電機低速時可以正常運轉,但若高於一定速度就無法啟動,並伴有嘯叫聲。 步進電機有一個技術參數:空載啟動頻率,即步進電機在空載情況下能夠正常啟動的脈衝頻率,如果脈衝頻率高於該值,電機不能正常啟動,可能發生丟步或堵轉。在有負載的情況下,啟動頻率應更低。如果要使電機達到高速轉動,脈衝頻率應該有加速過程,即啟動頻率較低,然後按一定加速度升到所希望的高頻(電機轉速從低速升到高速)。步進電動機以其顯著的特點,在數位化製造時代發揮著重大的用途。伴隨著不同的數位化技術的發展以及步進電機本身技術的提高,步進電機將會在更多的領域得到套用。

5、高性能、無刷、免維護步進電機可提供非常精確的極其經濟的運動控制。這些2相步進電機本身按照較小的非常精確的1.8°增量(200/轉)運動。該步進動作容易控制,不需要複雜、昂貴的反饋設備。它們是氣動、液壓和伺服電機系統的優秀替代產品。.

指標及術語

步進電機
步進電機
1、步距角精度: 步進電機每轉過一個步距角的實際值與理論值的誤差。用百分比表示:誤差/步距角*100%。不同運行拍數其值不同,四拍運行時應在5%之內,八拍運行時應在15%以內。

2、失步: 電機運轉時運轉的步數,不等於理論上的步數。稱之為失步。

3、失調角: 轉子齒軸線偏移定子齒軸線的角度,電機運轉必存在失調角,由失調角產生的誤差,採用細分驅動是不能解決的。

4、最大空載起動頻率: 電機在某種驅動形式、電壓及額定電流下,在不加負載的情況下,能夠直接起動的最大頻率。

5、最大空載的運行頻率: 電機在某種驅動形式,電壓及額定電流下,電機不帶負載的最高轉速頻率。

6、運行矩頻特性: 電機在某種測試條件下測得運行中輸出力矩與頻率關係的曲線稱為運行矩頻特性,這是電機諸多動態曲線中最重要的,也是電機選擇的根本依據。如下圖所示: 其它特性還有慣頻特性、起動頻率特性等。 電機一旦選定,電機的靜力矩確定,而動態力矩卻不然,電機的動態力矩取決於電機運行時的平均電流(而非靜態電流),平均電流越大,電機輸出力矩越大,即電機的頻率特性越硬。

7、電機的共振點:步進電機均有固定的共振區域,二、四相感應子式的共振區一般在180-250pps之間(步距角1.8度)或在400pps左右(步距角為0.9度),電機驅動電壓越高,電機電流越大,負載越輕,電機體積越小,則共振區向上偏移,反之亦然,為使電機輸出電矩大,不失步和整個系統的噪音降低,一般工作點均應偏移共振區較多。

8、電機正反轉控制: 當電機繞組通電時序為AB-BC-CD-DA或()時為正轉,通電時序為DA-CA-BC-AB或()時為反轉。 步進電機是將電脈衝信號轉變為角位移或線位移的開環控制元件。在非超載的情況下,電機的轉速、停止的位置只取決於脈衝信號的頻率和脈衝數,而不受負載變化的影響,即給電機加一個脈衝信號,電機則轉過一個步距角當步進驅動器接收到一個脈衝信號,它就驅動步進電機按設定的方向轉動一個固定的角度(及步進角)。您可以通過控制脈衝個數來控制角位移量,從而達到準確定位的目的;同時您可以通過控制脈衝頻率來控制電機轉動的速度和加速度,從而達到調速的目的。這一線性關係的存在,加上步進電機只有周期性的誤差而無累積誤差等特點。使得在速度、位置等控制領域用步進電機來控制變的非常的簡單。步進電動機的位移量與脈衝數嚴格成比例,這就不會引起誤差的積累,其轉速與脈衝頻率和步距角有關。雖然步進電機已被廣泛地套用,但步進電機並不能象普通的直流電機,交流電機在常規下使用。對於步進電機不能簡單的說是直流還是交流,步進電機在運行時,步進電機的各繞組,要按一定的次序加以一定幅度,一定寬度的脈衝,這個脈衝電流流過繞組時,有單方向,也有雙方向的區別。它必須由雙環形脈衝信號、功率驅動電路等組成控制系統方可使用。而且步進電機本身不接電源的! 步進電機是通過驅動器連線電源的!驅動器分高壓和低壓之分,也就是所謂的直流和交流。

基本參數

步進電機步進電機
1、電機固有步距角

它表示控制系統每發一個步進脈衝信號,電機所轉動的角度。電機出廠時給出了一個步距角的值,如86BYG250A型電機給出的值為0.9°/1.8°(表示半步工作時為0.9°、整步工作時為1.8°),這個步距角可以稱之為‘電機固有步距角’,它不一定是電機實際工作時的真正步距角,真正的步距角和驅動器有關。

2、步進電機的相數

是指電機內部的線圈組數,目前常用的有二相、三相、四相、五相步進電機。電機相數不同,其步距角也不同,一般二相電機的步距角為0.9°/1.8°、三相的為0.75°/1.5°、五相的為0.36°/0.72°。在沒有細分驅動器時,用戶主要靠選擇不同相數的步進電機來滿足自己步距角的要求。如果使用細分驅動器,則‘相數’將變得沒有意義,用戶只需在驅動器上改變細分數,就可以改變步距角。

3、保持轉矩(HOLDINGTORQUE)

是指步進電機通電但沒有轉動時,定子鎖住轉子的力矩。它是步進電機最重要的參數之一,通常步進電機在低速時的力矩接近保持轉矩。由於步進電機的輸出力矩隨速度的增大而不斷衰減,輸出功率也隨速度的增大而變化,所以保持轉矩就成為了衡量步進電機最重要的參數之一。比如,當人們說2N.m的步進電機,在沒有特殊說明的情況下是指保持轉矩為2N.m的步進電機。 DETENTTORQUE:是指步進電機沒有通電的情況下,定子鎖住轉子的力矩。DETENTTORQUE在國內沒有統一的翻譯方式,容易使大家產生誤解;由於反應式步進電機的轉子不是永磁材料,所以它沒有DETENTTORQUE。

最大轉速

首先步進電機有優勢在於,編程簡單,接線少,故障也少,扭力大,現在的步進電機最高能達到60000脈衝數。轉速也有的能達到3000轉的,通常情況都能達到600轉。

步進電機一般說是可以達到600轉,很多時候達不到這個轉速的,廠家說是600轉,在使用過程中很多時候可以達到500轉。一般情況下,機器能轉到500轉,已經很快的了。再快了可能就會堵轉,電機就象卡死了一樣的響,這就是速度過高,電機轉不過來。發生這種現象,解決的辦法是:1、降低最高運行頻率;2、調高加減速時間;3、降低啟動頻率;4、把細分數調高一個檔位。

步進電機的轉速和力矩成反比,轉速越快,力矩越小。這點選型的時候很重要,不要小馬拉大車。選型大一點沒關係,小了或是剛剛好就真是不行,丟步大多數是因為電機小了,機械過重,造成小馬拉大車的現象。

很多人都說步進電機丟步,其實機械原因也有很多,像絲桿軸承沒有裝好,絲桿磨損,導軌磨損都能讓機械走不準,還有原點開關的好壞,直接影響精度。

驅動電路

步進電機區別於其他控制電機的最大特點是,它是通過輸入脈衝信號來進行控制的,即電機的總轉動角度由輸入脈衝數決定,而電機的轉速由脈衝信號頻率決定。
步進電機的驅動電路根據控制信號工作,控制信號由單片機產生。其基本原理作用如下:

(1)控制換相順序

通電換相這一過程稱為脈衝分配。例如:三相步進電機的三拍工作方式,其各相通電順序為A-B-C-D,通電控制脈衝必須嚴格按照這一順序分別控制A,B,C,D相的通斷。

(2)控制步進電機的轉向

如果給定工作方式正序換相通電,步進電機正轉,如果按反序通電換相,則電機就反轉。

(3)控制步進電機的速度

如果給步進電機發一個控制脈衝,它就轉一步,再發一個脈衝,它會再轉一步。兩個脈衝的間隔越短,步進電機就轉得越快。調整單片機發出的脈衝頻率,就可以對步進電機進行調速。

如何做一名工程師預測步進電機牽出轉矩

在最近的文章中,我寫了一篇關於步進電機系統的性能強調的是,所有的工程師需要了解這種被廣泛使用的電磁機械數字激勵器的關鍵概念。作為延續這篇文章中的討論,我談步進電機牽出轉矩曲線,因為這是由電機製造商提供的最重要的信息。的最大可用電動機轉矩與速度(每秒的脈衝),該曲線是所獲得的實驗曲線使用特定的操作模式,例如,兩相上,全步進模式中,與特定驅動程式的方法,例如,電壓控制或電流控制。

拉入扭矩曲線顯示最大摩擦轉矩與該馬達可以啟動,在不同的步進率,而不會失去任何步驟。在實際套用中,該曲線已被轉移到占負載慣量。拉出轉矩曲線顯示了可用的扭矩時,電機運行在一個恆定的速度在給定頻率。在一個應用程式,這個扭矩可用於克服負載摩擦轉矩和用於加速負載和電機慣量。所選驅動器對輸出扭矩和功率巨大的影響力。

工程師將使用電機的模式(例如,半步或四分之一步)和驅動程式的方法由應用程式決定的。可以一個工程師預測為條件下的步進電機特定於應用程式的牽出轉矩曲線?答案是肯定的,而且,正如你所期望的,它是通過建模完成。

鏇轉(Θ)機械子系統包括一個轉子慣量J,摩擦轉矩TF(庫侖和粘滯)和負載轉矩TL與連線到通過上述磁場產生和磁轉矩,TM,正比於所代表的電氣子系統相電流,I,用一個比例常數克拉。轉子齒的數量是天然橡膠。電氣子系統包括一個直流電壓源電子供應,相電流,i,相電阻R,和相自感,L,與耦合到通過上述磁場產生並通過一個速度相關的電壓Eb為代表的機械子系統的用的比例常數kb的。另外,由於電機轉子具有永磁體,有一止動轉矩,TD,在磁轉矩的4倍的頻率發生,甚至在不存在任何相電流。這裡必須要添加的驅動程式模型是電壓控制和電流控制。

通過施加斜坡載入轉矩,TL,在指定的速度(每秒的脈衝),在運行模擬,並觀察負載轉矩的值中得到的牽出轉矩在該電機損耗的同步路徑,即錯過步驟。重複這一步驟,要的速度範圍。通過施加規定的負載轉矩和運行模擬的序列的速度增加,以確定最大速度可以為電機運行在該負載轉矩得到的牽入轉矩曲線。

而更準確的混合動力汽車車型存在,這裡所描述的模型是最充足的步進電機系統設計。參數識別是關鍵和製造商的電機數據往往是稀疏的大公差。所有在這個模型中的參數可以從什麼是在電機數據表通常給出確定。如果精確的模型預測是必不可少的,沒有什麼可以替代的測量,以驗證數據表。

功能模組設計

步進電機步進電機
本模組可分為如下3個部分:

單片機系統:控制步進電動機;

外圍電路:PIC單片機和步進電動機的接口電路;

PIC程式:編寫單片機控制步進電功機的接口程式,實現三角波信號的輸出功能。

(1)步進電動機與單片機的接口。
單片機是性能極佳的控制處理器,在控制步進電機工作時,接口部件必須要有下列功能。

①電壓隔離功能。
單片機工作在5V,而步進電機是工作在幾十V,甚至更高。一旦步進電機的電壓串到單片機中,就會損壞單片機;步進電機的信號會干擾單片機,也可能導致系統工作失誤,因此接口器件必須有隔離功能。

②信息傳遞功能。
接口部件應能夠把單片機的控制信息傳遞給步進電機迴路,產生工作所需的控制信息,對應於不同的工作方式,接口部件應能產生相應的工作控制波形。

③產生所需的不同頻率。
為了使步進電機以不同的速度工作,以適應不同的目的,接口部件應能產生不同的工作頻率。

(2)電壓隔離接口。
電壓隔離接口專用於隔離低壓部分的單片機和高壓部分的步進電機驅動電路,以保證它們的正常工作。
電壓隔離接口可以用脈衝變壓器或光電隔離器,基本上是採用光電隔離器。單片機輸出信號可以通過TTL門電路或者直接送到電晶體的基極,再由電晶體驅動光電耦合器件的發光二極體。

發光二極體的光照到光電耦合器件內部的光敏管上,轉換成電信號,再去驅動步進電機的功率放大電路,電流放大接口是步進電機功放電路的前置放大電路。它的作用是把光電隔離器的輸出信號進行電流放大,以便向功放電路提供足夠大的驅動電流。

(3)工作方式接口和頻率發生器。
用單片機控制步進電動機,需要在輸入輸出接口上用3條I/0線對步進電動機進行控制,這時,單片機用I/O口的RA0、RAI、RA2控制步進電動機的三相。

優勢及缺陷

優點

步進電機步進電機
1、電機鏇轉的角度正比於脈衝數;

2、電機停轉的時候具有最大的轉矩(當繞組激磁時)

3、由於每步的精度在百分之三到百分之五,而且不會將一步的誤差積累到下一步因而有較好的位置精度和運動的重複性;

4、優秀的起停和反轉回響;

5、由於沒有電刷,可靠性較高,因此電機的壽命僅僅取決於軸承的壽命;

6、電機的回響僅由數字輸入脈衝確定,因而可以採用開環控制,這使得電機的結構可以比較簡單而且控制成本;

7、僅僅將負載直接連線到電機的轉軸上也可以極低速的同步鏇轉;

8、由於速度正比於脈衝頻率,因而有比較寬的轉速範圍。

缺陷

1、如果控制不當容易產生共振;

2、難以運轉到較高的轉速;

3、難以獲得較大的轉矩;

4、在體積重量方面沒有優勢,能源利用率低

5、超過負載時會破壞同步,高速工作時會發出振動和噪聲。

驅動方法

步進電機步進電機
步進電機不能直接接到工頻交流或直流電源上工作,而必須使用專用的步進電動機驅動器,它由脈衝發生控制單元、功率驅動單元、保護單元等組成。驅動單元與步進電動機直接耦合,也可理解成步進電動機微機控制器的功率接口。

驅動要求

1、能夠提供較快的電流上升和下降速度,
使電流波形儘量接近矩形。

具有供截止期間釋放電流流通的迴路,以降低繞組兩端的反電動勢,加快電流衰減。

2、具有較高韻功率及效率。

步進電機驅動器,它是把控制系統發出的脈衝信號轉化為步進電機的角位移,或者說:控制系統每發一個脈衝信號,通過驅動器就使步進電機鏇轉一個步距角。也就是說步進電機的轉速與脈衝信號的頻率成正比。所以控制步進脈衝信號的頻率,就可以對電機精確調速;控制步進脈衝的個數,就可以對電機精確定位。步進電機驅動器有很多,應以實際的功率要求合理的選擇驅動器。

主要套用

步進電機步進電機
步進電機的選擇
步進電機有步距角(涉及到相數)、靜轉矩、及電流三大要素組成。
一旦三大要素確定,步進電機的型號便確定下來了。

1、步距角的選擇
電機的步距角取決於負載精度的要求,將負載的最小解析度(當量)換算到電機軸上,每個當量電機應走多少角度(包括減速)。電機的步距角應等於或小於此角度。市場上步進電機的步距角一般有0.36度/0.72度(五相電機)、0.9度/1.8度(二、四相電機)、1.5度/3度(三相電機)等。

2、靜力矩的選擇
步進電機的動態力矩一下子很難確定,我們往往先確定電機的靜力矩。靜力矩選擇的依據是電機工作的負載,而負載可分為慣性負載和摩擦負載二種。單一的慣性負載和單一的摩擦負載是不存在的。直接起動時(一般由低速)時二種負載均要考慮,加速起動時主要考慮慣性負載,恆速運行進只要考慮摩擦負載。一般情況下,靜力矩應為摩擦負載的2-3倍內好,靜力矩一旦選定,電機的機座及長度便能確定下來(幾何尺寸)。

3、電流的選擇
靜力矩一樣的電機,由於電流參數不同,其運行特性差別很大,可依據矩頻特性曲線圖,判斷電機的電流。
套用中的注意點
1、步進電機套用於低速場合---每分鐘轉速不超過1000轉,(0.9度時6666PPS),最好在1000-3000PPS(0.9度)間使用,可通過減速裝置使其在此間工作,此時電機工作效率高,噪音低;

2、步進電機最好不使用整步狀態,整步狀態時振動大;

3、由於歷史原因,只有標稱為12V電壓的電機使用12V外,其他電機的電壓值不是驅動電壓伏值,可根據驅動器選擇驅動電壓(建議:57BYG採用直流24V-36V,86BYG採用直流50V,110BYG採用高於直流80V),當然12伏的電壓除12V恆壓驅動外也可以採用其他驅動電源,不過要考慮溫升;

4、轉動慣量大的負載應選擇大機座號電機;

5、電機在較高速或大慣量負載時,一般不在工作速度起動,而採用逐漸升頻提速,一電機不失步,二可以減少噪音同時可以提高停止的定位精度;

6、高精度時,應通過機械減速、提高電機速度,或採用高細分數的驅動器來解決,也可以採用5相電機,不過其整個系統的價格較貴,生產廠家少,其被淘汰的說法是外行話;
7、電機不應在振動區內工作,如若必須可通過改變電壓、電流或加一些阻尼的解決;

8、電機在600PPS(0.9度)以下工作,應採用小電流、大電感、低電壓來驅動;

9、應遵循先選電機後選驅動的原則。

發展歷程

步進電機又稱脈衝電機或階躍電機,或步進驅動器。步進電機是將電脈衝信號轉變為角位移或線位移的開環控制元步進電機件。在非超載的情況下,電機的轉速、停止的位置只取決於脈衝信號的頻率和脈衝數,而不受負載變化的影響,當步進驅動器接收到一個脈衝信號,它就驅動步進電機按設定的方向轉動一個固定的角度,稱為“步距角”,它的鏇轉是以固定的角度一步一步運行的。可以通過控制脈衝個數來控制角位移量,從而達到準確定位的目的;同時可以通過控制脈衝頻率來控制電機轉動的速度和加速度,從而達到調速的目的。

日前,隨著電子技術,控制技術以及電機本體的發展和變化,傳統電機分類間的界面越來越模糊。筆者認為這是機電一體化元件組的必然趨勢。就傳統的步進電機來說,步進電機可以簡單地定義為,根據輸入的脈衝信號,每改變一次勵磁狀態就前進一定角度(或長度),若不改變勵磁狀態則保持一定位置而靜止的電機。從廣義上講,步進電機是一種脈衝信號控制的無刷式直流電機,也可看作是在一定頻率範圍內轉速與控制脈衝頻率同步的同步電機。

步進電機的機理是基於最基本的電磁鐵作用,其原如模型起源於1830年至1860年間。1870年前後開始以控制為目的的嘗試,套用於氬弧燈的電極輸送機構中。這被認為是最初的步進電機。此後,在電話自動交換中廣泛使用了步進電機。不久又在缺乏交流電源的船舶和飛機等獨立系統中廣泛使用。

20世紀60年代後期,在步進電機本體方面隨著永磁材料的發展,各種實用性步進電機應運而生,而半導體技術的發展則推進了步進電機在眾多領域的套用。在近30年間,步進電機迅速地發燕並成熟起來。從發展趨向來講,步進電機已經能與直流電機、異步電機、以及同步電機並列,從而成為電機的一種基本類型。

在我國,步進電機的研究及製造起始於本世紀50年代後期。從50年代後期到60年代後期,主要是高等院校和科研機構為研究一些裝置而使用或開發少量產品。這些產品以多段結構三相反應式步進電機為主。70年代初期,步進電機的生產和研究有所突破。除反映在驅動器設計方面的長足進步外,對反應式步進電機本體的設計研究發展到一個較高水平。70年代中期至80年年代中期為成品發展階段,新品種高性能電機不斷被開發。自80年代中期以來,由於對步進電機精確模型做了大量研究工作,各種混合式步進驅動器作為產品廣泛利用。

電工學知識

伴隨新技術革命和教學改革的不斷深入,當前套用電工學迅速發展,由於電工學的套用領域不斷擴大,電工學的知識也必不可少。

相關搜尋

熱門詞條

聯絡我們