膜分離

膜分離

膜分離是在20世紀初出現,20世紀60年代後迅速崛起的一門分離新技術。膜分離技術由於兼有分離、濃縮、純化和精製的功能,又有高效、節能、環保、分子級過濾及過濾過程簡單、易於控制等特徵。因此,目前已廣泛套用於食品、醫藥、生物、環保、化工、冶金、能源、石油、水處理、電子、仿生等領域,產生了巨大的經濟效益和社會效益,已成為當今分離科學中最重要的手段之一。

基本信息

膜分離

膜分離是在20世紀初出現,20世紀60年代後迅速崛起的一門分離新技術。膜分離技術由於兼有分離、濃縮、純化和精製的功能,又有高效、節能、環保、分子級過濾及過濾過程簡單、易於控制等特徵。膜分離技術是用半透膜作為選擇障礙層、在膜的兩側存在一定量的能量差作為動力,允許某些組分透過而保留混合物中其他組分,各組分透過膜的遷移率不同,從而達到分離目的的技術。是一種屬於傳質分離過程單元操作。膜可以是固態或液態,所處理的流體可以是液體或氣體,過程的推動力可以是壓力差、濃度差或電位差。目前,膜分離主要包括滲透、反滲透、超濾、透析、電滲析、液膜技術、氣體滲透和滲透蒸發等方法。

膜是具有選擇性分離功能的材料。利用膜的選擇性分離實現料液的不同組分的分離、純化、濃縮的過程稱作膜分離。它與傳統過濾的不同在於,膜可以在分子範圍內進行分離,並且這過程是一種物理過程,不需發生相的變化和添加助劑。膜的孔徑一般為微米級,依據其孔徑的不同(或稱為截留分子量),可將膜分為微濾膜、超濾膜、納濾膜和反滲透膜,根據材料的不同,可分為無機膜和有機膜,無機膜主要還只有微濾級別的膜,主要是陶瓷膜和金屬膜。有機膜是由高分子材料做成的,如醋酸纖維素、芳香族聚醯胺、聚醚碸、聚氟聚合物等等

1748年法國學者A.諾勒開創了膜滲透現象的研究。20世紀40年代中期出現人工離子交換膜,開始了電滲析的工業套用。1960年,S.洛布和S.索里拉金首先用醋酸纖維素製成非對稱性反滲透膜,開拓了反滲透的實際套用。1968年,美籍華裔學者黎念之最先研究乳化液膜的形成方法和滲透機理,開拓了液膜分離技術。中國自1958年開始研究電滲析,1966年開始研究反滲透,現已對膜分離技術的各個領域開展了研究工作,並推廣於工業套用。

類別結構

膜分離膜分離

膜分離的效能,取決於膜本身的屬性。膜可分液膜和固體膜。固體膜又可分:①無機多孔膜,由無機質的多孔材料構成。將膠體和不溶性微粒強制沉積於無機多孔膜上便製成動力形成膜。②合成膜,通常採用醋酸纖維素、芳香族聚醯胺、聚碸、聚乙烯、聚丙烯等高分子材料製成。合成膜又分為離子交換膜、均質膜和多孔膜。離子交換膜由帶有可電離的陽離子或陰離子的高分子材料所構成;均質膜是均勻的高分子薄膜;多孔膜是在鑄膜液中加發孔劑,經過蒸發和凝膠分離而成的。多孔膜又分為非對稱膜和複合膜。非對稱膜(見圖)的膜體可分為表皮層和支撐層,表皮層質地緻密,厚度很小(0.1~0.2μm),但它決定了膜的選擇性和滲透性能;支撐層具有多孔結構,它提供必要的機械強度。膜的結構可通過調節鑄膜液組成和凝膠形成條件予以控制。複合膜是以多孔膜作支撐層,覆以極薄的表皮層。用於工業分離的合成膜,可製成片狀、管狀和中空纖維狀(見彩圖)等,因此膜分離設備也隨之具有多種結構形式。膜的結構形態,通常藉助於電子顯微鏡技術、電子透射或掃描來觀察。

膜分離膜分離

過程分類

按所用的膜,分為液膜分離和合成膜分離。液膜分離過程分為乳化液膜和固定液膜的分離過程。合成膜的分離過程(見圖)包括微過濾、超過濾、反滲透、氣體滲透分離、滲透蒸發、滲析及電滲析等過程。

膜分離膜分離

膜分離過程可簡化為滲透過程。滲透過程的機理研究尚處於發展之中,有多種描述方法,目前尚未得出統一的理論。滲透的基本問題是膜內傳遞的概念。物質在膜內的傳質通量可概括為:傳質通量=滲透係數×傳遞推動力式中傳質通量為單位時間內單位膜面積的物質透過量;滲透係數為單位時間內單位膜面積在單位推動力作用下的物質透過量;傳遞推動力有多種,各有其計量單位。滲透係數不僅取決於滲透物質的屬性,也取決於膜材料的化學屬性和膜的物理構型(見表)。

描述膜滲透機理的主要模型有:

①溶解-擴散模型適用於液體膜、均質膜或非對稱膜表皮層內的物質傳遞。在推動力作用下,滲透物質先溶解進入膜的上游側,然後擴散至膜的下游側,擴散是控制步驟。例如氣體的滲透分離過程中,推動力是膜兩側滲透物質的分壓差。當溶解服從亨利定律(見相平衡關聯)時,組分的滲透率是組分在膜中的擴散係數和溶解度係數的乘積。混合氣體的分離依賴於各組分在膜中滲透率的差異。

溶解-擴散模型用於滲透蒸發(又稱汽滲,上游側為溶液,下游側抽真空或用惰性氣體攜帶,使透過物質汽化而分離)時,還須包括膜的汽液界面上各組分的熱力學平衡關係。

②優先吸附-毛細管流動模型 由於膜表面對滲透物的優先吸附作用,在膜的上游側表面形成一層該物質富集的吸附液體層。然後,在壓力作用下通過膜的毛細管,連續進入產品溶液中。此模型能描述多孔膜的反滲透過程。

③從不可逆熱力學導出的模型 膜分離過程通常不只依賴於單一的推動力,而且還有伴生效應(如濃差極化)。不可逆熱力學唯象理論統一關聯了壓力差、濃度差、電位差對傳質通量的關係,採用線性唯象方程描述這種具有伴生效應的過程,並以配偶唯象係數描述伴生效應的影響。

套用

微濾
鑒於微孔濾膜的分離特徵,微孔濾膜的套用範圍主要是從氣相和液相中截留微粒、細菌以及其他污染物,以達到淨化、分離、濃縮的目的。
具體涉及領域主要有:醫藥工業、食品工業(明膠、葡萄酒、白酒、果汁、牛奶等)、高純水、城市污水、工業廢水、飲用水、生物技術、生物發酵等。
超濾
早期的工業超濾套用於廢水和污水處理。三十多年來,隨著超濾技術的發展,如今超濾技術已經涉及食品加工、飲料工業、醫藥工業、生物製劑、中藥製劑、臨床醫學、印染廢水、食品工業廢水處理、資源回收、環境工程等眾多領域。
納濾
納濾的主要套用領域涉及:食品工業、植物深加工、飲料工業、農產品深加工、生物醫藥、生物發酵、精細化工、環保工業……
反滲透
由於反滲透分離技術的先進、高效和節能的特點,在國民經濟各個部門都得到了廣泛的套用,主要套用於水處理和熱敏感性物質的濃縮,主要套用領域包括以下:食品工業、牛奶工業、飲料工業、植物(農產品)深加工、生物醫藥、生物發酵、製備飲用水、純水、超純水、海水、苦鹹水淡化、電力、電子、半導體工業用水、醫藥行業工藝用水、製劑用水、注射用水、無菌無熱源純水、食品飲料工業、化工及其它工業的工藝用水、鍋爐用水、洗滌用水及冷卻用水
其他
除了以上四種常用的膜分離過程,另外還有滲析、控制釋放、膜感測器、膜法氣體分離等。

發展史

膜在大自然中,特別是在生物體內是廣泛存在的,但我們人類對它的認識、利用、模擬直至現在人工合成的歷史過程卻是漫長而曲折的。我國膜科學技術的發展是從1958年研究離子交換膜開始的。60年代進入開創階段。1965年著手反滲透的探索,1967年開始的全國海水淡化會戰,大大促進了我國膜科技的發展。70年代進入開發階段。這時期,微濾、電滲析、反滲透和超濾等各種膜和組器件都相繼研究開發出來,80年代跨入了推廣套用階段。80年代又是氣體分離和其他新膜開發階段。

現狀

隨著我國膜科學技術的發展,相應的學術、技術團體也相繼成立。她們的成立為規範膜行業的標準、促進膜行業的發展起著舉足輕重的作用。半個世紀以來,膜分離完成了從實驗室到大規模工業套用的轉變,成為一項高效節能的新型分離技術。1925年以來,差不多每十年就有一項新的膜過程在工業上得到套用。

由於膜分離技術本身具有的優越性能,故膜過程現在已經得到世界各國的普遍重視。在能源緊張、資源短缺、生態環境惡化的今天,產業界和科技界把膜過程視為二十一世紀工業技術改造中的一項極為重要的新技術。曾有專家指出:誰掌握了膜技術誰就掌握了化學工業的明天。

80年代以來我國膜技術跨入套用階段,同時也是新膜過程的開發階段。在這一時期,膜技術在食品加工、海水淡化、純水、超純水製備、醫藥、生物、環保等領域得到了較大規模的開發和套用。並且,在這一時期,國家重點科技攻關項目和自然科學基金中也都有了膜的課題。

目前,這一潛力巨大的新興行業正在以蓬勃的激情挑戰市場,為眾多的企業帶來了較為顯著的經濟效益、社會效益和環境效益。

優點

l在常溫下進行

有效成分損失極少,特別適用於熱敏性物質,如抗生素等醫藥、果汁、酶、蛋白的分離與濃縮

2無相態變化

保持原有的風味,能耗極低,其費用約為蒸發濃縮或冷凍濃縮的1/3-1/8

3無化學變化

典型的物理分離過程,不用化學試劑和添加劑,產品不受污染

4選擇性好

可在分子級內進行物質分離,具有普遍濾材無法取代的卓越性能

5 適應性強

處理規模可大可小,可以連續也可以間隙進行,工藝簡單,操作方便,易於自動化

分離過程

1 微濾

鑒於微孔濾膜的分離特徵,微孔濾膜的套用範圍主要是從氣相和液相中截留微粒、細菌以及其他污染物,以達到淨化、分離、濃縮的目的。

具體涉及領域主要有:醫藥工業、食品工業(明膠、葡萄酒、白酒、果汁、牛奶等)、高純水、城市污水、工業廢水、飲用水、生物技術、生物發酵等。

2超濾

早期的工業超濾套用於廢水和污水處理。三十多年來,隨著超濾技術的發展,如今超濾技術已經涉及食品加工、飲料工業、醫藥工業、生物製劑、中藥製劑、臨床醫學、印染廢水、食品工業廢水處理、資源回收、環境工程等眾多領域。

3 納濾

納濾的主要套用領域涉及:食品工業、植物深加工、飲料工業、農產品深加工、生物醫藥、生物發酵、精細化工、環保工業……

4反滲透

由於反滲透分離技術的先進、高效和節能的特點,在國民經濟各個部門都得到了廣泛的套用,主要套用於水處理和熱敏感性物質的濃縮,主要套用領域包括以下:食品工業、牛奶工業、飲料工業、植物(農產品)深加工、生物醫藥、生物發酵、製備飲用水、純水、超純水、海水、苦鹹水淡化、電力、電子、半導體工業用水、醫藥行業工藝用水、製劑用水、注射用水、無菌無熱源純水、食品飲料工業、化工及其它工業的工藝用水、鍋爐用水、洗滌用水及冷卻用水

5 其他

除了以上四種常用的膜分離過程,另外還有滲析、控制釋放、膜感測器、膜法氣體分離等。

相關詞條

相關搜尋

熱門詞條

聯絡我們