全球定位系統GPS

基本信息

GPS全球定位系統(Global Positioning System,通常簡稱GPS)
全球定位系統(Global Positioning System,通常簡稱GPS)是美國國防部研製的一種全天候的,空間基準的導航系統,可滿足位於全球任何地方或近地空間的軍事用戶連續地精確地確定三位位置和三位運動及時間的需要。它是一個中距離圓型軌道衛星導航系統。它可以為地球表面絕大部分地區(98%)提供準確的定位、測速和高精度的時間標準。該系統的組成包括太空中的24顆GPS衛星;地面上的1個主控站、3個數據注入站和5個監測站及作為用戶端的GPS接收機。最少只需其中4顆衛星,就能迅速確定用戶端在地球上所處的位置及海拔高度;所能收聯接到的衛星數越多,解碼出來的位置就越精確。該系統是由美國政府於20世紀70年代開始進行研製於1994年全面建成。使用者只需擁有GPS接收機,無需另外付費。GPS信號分為民用的標準定位服務(sps,standard positioning service)和軍規的精密定位服務(pss,precise positioning service)兩類。民用訊號中加有誤差,其最終定位精確度大概在100米左右;軍規的精度在十米以下。2000年以後,柯林頓政府決定取消對民用信號所加的誤差。因此,現在民用GPS也可以達到十米左右的定位精度。
全球定位系統(GPS)是20世紀70年代由美國陸海空三軍聯合研製的新一代空間衛星導航定位系統 。其主要目的是為陸、海、空三大領域提供實時、 全天候和全球性的導航服務,並用於情報收集、核爆監測和應急通訊等一些軍事目的,是美國獨霸全球戰略的重要組成。經過20餘年的研究實驗,耗資300億美元,到1994年3月,全球覆蓋率高達98%的24顆GPS衛星星座己布設完成。

組成部分

空間部分———GPS星座;地面控制部分———地面監控系統;用戶設備部分———GPS 信號接收機。

優點

全天候,不受任何天氣的影響;全球覆蓋(高達98%);三維定速定時高精度;快速、省時、高效率;套用廣泛、多功能;可移動定位;不同於雙星定位系統,使用過程中接收機不需要發出任何信號增加了隱蔽性,提高了其軍事套用效能。

發展歷程

前身

GPS(又稱全球衛星導航系統或全球衛星定位系統)系統的前身為美軍研製的一種子午儀衛星定位系統(Transit),1958年研製,64年正式投入使用。該系統用5到6顆衛星組成的星網工作,每天最多繞過地球13次,並且無法給出高度信息,在定位精度方面也不盡如人意。然而,子午儀系統使得研發部門對衛星定位取得了初步的經驗,並驗證了由衛星系統進行定位的可行性,為GPS系統的研製埋下了鋪墊。由於衛星定位顯示出在導航方面的巨大優越性及子午儀系統存在對潛艇和艦船導航方面的巨大缺陷。
美國海陸空三軍及民用部門都感到迫切需要一種新的衛星導航系統。為此,美國海軍研究實驗室(NRL)提出了名為Tinmation的用12到18顆衛星組成10000km高度的全球定位網計畫,並於67年、69年和74年各發射了一顆試驗衛星,在這些衛星上初步試驗了原子鐘計時系統,這是GPS系統精確定位的基礎。而美國空軍則提出了621-B的以每星群4到5顆衛星組成3至4個星群的計畫,這些衛星中除1顆採用同步軌道外其餘的都使用周期為24h的傾斜軌道 該計畫以偽隨機碼(PRN)為基礎傳播衛星測距信號,其強大的功能,當信號密度低於環境噪聲的1%時也能將其檢測出來。偽隨機碼的成功運用是GPS系統得以取得成功的一個重要基礎。海軍的計畫主要用於為艦船提供低動態的2維定位,空軍的計畫能供提供高動態服務,然而系統過於複雜。由於同時研製兩個系統會造成巨大的費用而且這裡兩個計畫都是為了提供全球定位而設計的,所以1973年美國國防部將2者合二為一,並由國防部牽頭的衛星導航定位聯合計畫局(JPO)領導,還將辦事機構設立在洛杉磯的空軍航天處。該機構成員眾多,包括美國陸軍、海軍、海軍陸戰隊、交通部、國防製圖局、北約澳大利亞的代表。

計畫

最初的GPS計畫在聯合計畫局的領導下誕生了,該方案將24顆衛星放置在互成120度的三個軌道上。每個軌道上有8顆衛星,地球上任何一點均能觀測到6至9顆衛星。這樣,粗碼精度可達100m,精碼精度為10m。 由於預算壓縮,GPS計畫不得不減少衛星發射數量,改為將18顆衛星分布在互成60度的6個軌道上。然而這一方案使得衛星可靠性得不到保障。1988年又進行了最後一次修改:21顆工作星和3顆備份星工作在互成30度的6條軌道上。這也是現在GPS衛星所使用的工作方式。
計畫實施:GPS計畫的實施共分三個階段:
第一階段為方案論證和初步設計階段。
1978年到1979年,由位於加利福尼亞范登堡空軍基地採用雙子座火箭發射4顆試驗衛星,衛星運行軌道長半軸為26560km,傾角64度。軌道高度20000km。這一階段主要研製了地面接收機及建立地面跟蹤網,結果令人滿意。
第二階段為全面研製和試驗階段。
1979年1984年,又陸續發射了7顆稱為BLOCK I的試驗衛星,研製了各種用途的接收機。實驗表明,GPS定位精度遠遠超過設計標準,利用粗碼定位,其精度就可達14米。
第三階段為實用組網階段。
1989年2月4日第一顆GPS工作衛星發射成功,這一階段的衛星稱為BLOCK II 和 BLOCK IIA。此階段宣告GPS系統進入工程建設狀態。1993年底使用的GPS網即(21+3)GPS星座已經建成,今後將根據計畫更換失效的衛星。

組成結構

空間部分:GPS的空間部分是由24 顆工作衛星組成,它位於距地表20 200km的上空,均勻分布在6 個軌道面上(每個軌道面4 顆) ,軌道傾角為55°。此外,還有4 顆有源備份衛星在軌運行。衛星的分布使得在全球任何地方、任何時間都可觀測到4 顆以上的衛星,並能保持良好定位解算精度的幾何圖象。這就提供了在時間上連續的全球導航能力。GPS 衛星產生兩組電碼, 一組稱為C/ A 碼( Coarse/ Acquisition Code11023MHz) ;一組稱為P 碼(Procise Code 10123MHz) ,P 碼因頻率較高,不易受干擾,定位精度高,因此受美國軍方管制,並設有密碼,一般民間無法解讀,主要為美國軍方服務。C/ A 碼人為採取措施而刻意降低精度後,主要開放給民間使用。
地面控制部分:地面控制部分由一個主控站,5 個全球監測站和3 個地面控制站組成。監測站均配裝有精密的銫鐘和能夠連續測量到所有可見衛星的接受機。監測站將取得的衛星觀測數據,包括電離層和氣象數據,經過初步處理後,傳送到主控站。主控站從各監測站收集跟蹤數據,計算出衛星的軌道和時鐘參數,然後將結果送到3 個地面控制站。地面控制站在每顆衛星運行至上空時,把這些導航數據及主控站指令注入到衛星。這種注入對每顆GPS 衛星每天一次,並在衛星離開注入站作用範圍之前進行最後的注入。如果某地面站發生故障,那么在衛星中預存的導航信息還可用一段時間,但導航精度會逐漸降低。
用戶設備部分:用戶設備部分即GPS 信號接收機。其主要功能是能夠捕獲到按一定衛星截止角所選擇的待測衛星,並跟蹤這些衛星的運行。當接收機捕獲到跟蹤的衛星信號後,即可測量出接收天線至衛星的偽距離和距離的變化率,解調出衛星軌道參數等數據。根據這些數據,接收機中的微處理計算機就可按定位解算方法進行定位計算,計算出用戶所在地理位置的經緯度、高度、速度、時間等信息。接收機硬體和機內軟體以及GPS 數據的後處理軟體包構成完整的GPS 用戶設備。GPS 接收機的結構分為天線單元和接收單元兩部分。接收機一般採用機內和機外兩種直流電源。設定機內電源的目的在於更換外電源時不中斷連續觀測。在用機外電源時機內電池自動充電。關機後,機內電池為RAM存儲器供電,以防止數據丟失。目前各種類型的接受機體積越來越小,重量越來越輕,便於野外觀測使用。

系統原理

GPSGPS

蘇聯發射了第一顆人造衛星後,美國約翰·霍布斯金大學套用物理實驗室的研究人員提出既然可以已知觀測站的位置知道衛星位置,那么如果已知衛星位置,應該也能測量出接收者的所在位置。這是導航衛星的基本構想。GPS導航系統的基本原理是測量出已知位置的衛星到用戶接收機之間的距離,然后綜合多顆衛星的數據就可知道接收機的具體位置。要達到這一目的,衛星的位置可以根據星載時鐘所記錄的時間在衛星星曆中查出。而用戶到衛星的距離則通過紀錄衛星信號傳播到用戶所經歷的時間,再將其乘以速得到(由於大氣層電離層的干擾,這一距離並不是用戶與衛星之間的真實距離,而是偽距PR):當GPS衛星正常工作時,會不斷地用1和0二進制碼元組成的偽隨機碼(簡稱偽碼)發射導航電文
GPS系統使用的偽碼一共有兩種,分別是民用的C/A碼和軍用的P(Y)碼。C/A碼頻率1.023MHz,重複周期一毫秒,碼間距1微秒,相當於300m;P碼頻率10.23MHz,重複周期266.4天,碼間距0.1微秒,相當於30m。而Y碼是在P碼的基礎上形成的,保密性能更佳。
導航電文包括衛星星曆、工作狀況、時鐘改正電離層時延修正、大氣折射修正等信息。它是從衛星信號中解調製出來,以50b/s調製在載頻上發射的。導航電文每個主幀中包含5個子幀每幀長6s。前三幀各10個字碼;每三十秒重複一次,每小時更新一次。後兩幀共15000b。導航電文中的內容主要有遙測碼、轉換碼、第1、2、3數據塊,其中最重要的則為星曆數據。當用戶接受到導航電文時,提取出衛星時間並將其與自己的時鐘做對比便可得知衛星與用戶的距離,再利用導航電文中的衛星星曆數據推算出衛星發射電文時所處位置,用戶在WGS-84大地坐標系中的位置速度等信息便可得知。可見GPS導航系統衛星部分的作用就是不斷地發射導航電文。然而,由於用戶接受機使用的時鐘與衛星星載時鐘不可能總是同步,所以除了用戶的三維坐標x、y、z外,還要引進一個Δt即衛星與接收機之間的時間差作為未知數,然後用4個方程將這4個未知數解出來。所以如果想知道接收機所處的位置,至少要能接收到4個衛星的信號。
GPS接收機可接收到可用於授時的準確至納秒級的時間信息;用於預報未來幾個月內衛星所處概略位置的預報星曆;用於計算定位時所需衛星坐標的廣播星曆,精度為幾米至幾十米(各個衛星不同,隨時變化);以及GPS系統信息,如衛星狀況等。GPS接收機對碼的量測就可得到衛星到接收機的距離,由於含有接收機衛星鐘的誤差及大氣傳播誤差,故稱為偽距。對0A碼測得的偽距稱為UA碼偽距,精度約為20米左右,對P碼測得的偽距稱為P碼偽距,精度約為2米左右。
按定位方式,GPS定位分為單點定位和相對定位(差分定位)。單點定位就是根據一台接收機的觀測數據來確定接收機位置的方式,它只能採用偽距觀測量,可用於車船等的概略導航定位。相對定位(差分定位)是根據兩台以上接收機的觀測數據來確定觀測點之間的相對位置的方法,它既可採用偽距觀測量也可採用相位觀測量,大地測量或工程測量均應採用相位觀測值進行相對定位.

GPS接收機對收到的衛星信號,進行解碼或採用其它技術,將調製在載波上的信息去掉後,就可以恢復載波。嚴格而言,載波相位應被稱為載波拍頻相位,它是收到的受都卜勒頻移影響的衛星信號載波相位與接收機本機振蕩產生信號相位之差。一般在接收機鍾確定的曆元時刻量測,保持對衛星信號的跟蹤,就可記錄下相位的變化值,但開始觀測時的接收機和衛星振盪器的相位初值是不知道的,起始曆元的相位整數也是不知道的,即整周模糊度,只能在數據處理中作為參數解算。相位觀測值的精度高至毫米,但前提是解出整周模糊度,因此只有在相對定位、並有一段連續觀測值時才能使用相位觀測值,而要達到優於米級的定位 精度也只能採用相位觀測值。

在GPS觀測量中包含了衛星和接收機的鐘差、大氣傳播延遲、多路徑效應等誤差,在定位計算時還要受到衛星廣播星曆誤差的影響,在進行相對定位時大部分公共誤差被抵消或削弱,因此定位精度將大大提高,雙頻接收機可以根據兩個頻率的觀測量抵消大氣中電離層誤差的主要部分,在精度要求高,接收機間距離較遠時(大氣有明顯差別),應選用雙頻接收機。

分類系統

GPSGPS套用
GPS衛星接收機種類很多,根據型號分為測地型全站型、定時型、手持型、集成型;根據用途分為車載式、船載式、機載式、星載式、彈載式
導航型接收機此類型接收機主要用於運動載體導航,它可以實時給出載體的位置和速度。這類接收機 一般採用C/A碼偽距測量,單點實時定位精度較低,一般為±10m,有SA影響時為±100m。 這類接收機價格便宜,套用廣泛。根據套用領域的不同,此類接收機還可以進一步分為:
車載型——用於車輛導航定位;
航海型——用於船舶導航定位;
航空型——用於飛機導航定位。由於飛機運行速度快,因此,在航空上用的接收機 要求能適應高速運動。
星載型——用於衛星的導航定位。由於衛星的速度高達7km/s以上,因此對接收機的要求更高。
測地型接收機測地型接收機主要用於精密大地測量和精密工程測量。這類儀器主要採用載波相位觀測值 進行相對定位,定位精度高。儀器結構複雜,價格較貴。
授時型接收機:這類接收機主要利用GPS衛星提供的高精度時間標準進行授時,常用於天文台及無線電通訊中時間同步。
按接收機的載波頻率分類:
單頻接收機:單頻接收機只能接收L1載波信號,測定載波相位觀測值進行定位。由於不能有效消除 電離層延遲影響,單頻接收機只適用於短基線(<15km)的精密定位。
雙頻接收機:雙頻接收機可以同時接收L1,L2載波信號。利用雙頻對電離層延遲的不一樣,可以消除電離層 對電磁波信號的延遲的影響,因此雙頻接收機可用於長達幾千公里的精密定位。
按接收機通道數分類:GPS接收機能同時接收多顆GPS衛星的信號,為了分離接收到的不同衛星的信號,以實現對衛星信號 的跟蹤、處理和量測,具有這樣功能的器件稱為天線信號通道。根據接收機所具有 的通道種類可分為:多通道接收機 序貫通道接收機 多路多用通道接收機
按接收機工作原理分類碼相關型接收機 碼相關型接收機是利用碼相關技術得到偽距觀測值。

平方型接收機
平方型接收機是利用載波信號的平方技術去掉調製信號,來恢復完整的載波信號 通過相位計測定接收機內產生的載波信號與接收到的載波信號之間的相位差,測定偽距觀測值。

混合型接收機:
這種儀器是綜合上述兩種接收機的優點,既可以得到碼相位偽距,也可以得到載波相位觀測值。
干涉型接收機這種接收機是將GPS衛星作為射電源,採用干涉測量方法,測定兩個測站間距離。經過20餘年的實踐證明,GPS系統是一個高精度、全天候和全球性的無線電導航、定位和定時的多功能系統。 GPS技術已經發展成為多領域、多模式、多用途、多機型的國際性高新技術產業。

套用系統

GPSGPS
GPS在道路工程中的套用:GPS在道路工程中的套用,目前主要是用於建立各種道路工程控制網及測定航測外控點等。隨著高等級公路的迅速發展,對勘測技術提出了更高的要求,由於線路長,已知點少,因此,用常規測量手段不僅布網困難,而且難以滿足高精度的要求。目前,國內已逐步採用GPS技術建立線路首級高精度控制網,然後用常規方法布設導線加密。實踐證明,在幾十公里範圍內的點位誤差只有2厘米左右,達到了常規方法難以實現的精度,同時也大大提前了工期。GPS技術也同樣套用於特大橋樑的控制測量中。由於無需通視,可構成較強的網形,提高點位精度,同時對檢測常規測量的支點也非常有效。GPS技術在隧道測量中也具有廣泛的套用前景,GPS測量無需通視,減少了常規方法的中間環節,因此,速度快、精度高,具有明顯的經濟和社會效益。

GPS在汽車導航和交通管理中的套用:三維導航是GPS的首要功能,飛機、輪船、地面車輛以及步行者都可以利用GPS導航器進行導航。汽車導航系統是在全球定位系統GPS基礎上發展起來的一門新型技術。汽車導航系統由GPS導航、自律導航、微處理機、車速感測器、陀螺感測器、CD-ROM驅動器、LCD顯示器組成。GPS導航系統與電子地圖、無線電通信網路、計算機車輛管理信息系統相結合,可以實現車輛跟蹤和交通管理等許多功能。

(1)車輛跟蹤 利用GPS和電子地圖可以實時顯示出車輛的實際位置,並可任意放大、縮小、還原、換圖;可以隨目標移動,使目標始終保持在螢幕上;還可實現多視窗、多車輛、多螢幕同時跟蹤。利用該功能可對重要車輛和貨物進行跟蹤運輸。

(2)提供出行路線規劃和導航 提供出行路線規劃是汽車導航系統的一項重要的輔助功能,它包括自動線路規劃和人工線路設計。自動線路規劃是由駕駛者確定起點和目的地,由計算機軟體按要求自動設計最佳行駛路線,包括最快的路線、最簡單的路線、通過高速公路路段次數最少的路線的計算。人工線路設計是由駕駛員根據自己的目的地設計起點、終點和途經點等,自動建立路線庫。線路規劃完畢後,顯示器能夠在電子地圖上顯示設計路線,並同時顯示汽車運行路徑和運行方法。

(3)信息查詢 為用戶提供主要物標、如旅遊景點、賓館、醫院等資料庫,用戶能夠在電子地圖上顯示其位置。同時,監測中心可以利用監測控制台對區域內的任意目標所在位置進行查詢,車輛信息將以數字形式在控制中心的電子地圖上顯示出來。

(4)話務指揮 指揮中心可以監測區域內車輛運行狀況,對被監控車輛進行合理調度。指揮中心也可隨時與被跟蹤目標通話,實行管理。

(5)緊急援助 通過GPS定位和監控管理系統可以對遇有險情或發生事故的車輛進行緊急援助。監控台的電子地圖顯示求助信息和報警目標,規劃最優援助方案,並以報警聲光提醒值班人員進行應急處理。

GPS的其它套用:GPS除了用於導航、定位、測量外,由於GPS系統的空間衛星上載有的精確時鐘可以發布時間和頻率信息,因此,以空間衛星上的精確時鐘為基礎,在地面監測站的監控下,傳送精確時間和頻率是GPS的另一重要套用,套用該功能可進行精確時間或頻率的控制,可為許多工程實驗服務。此外,還可利用GPS獲得氣象數據,為某些實驗和工程套用。

全球衛星定位系統GPS是今年以來開發的最具有開創意義的高新技術之一,其全球性、全能性、全天侯性的導航定位、定時、測速優勢必然會在諸多領域中得到越來越廣泛的套用。在已開發國家,GPS技術已經開始套用於交通運輸和交通工程。目前,GPS技術在中國道路工程和交通管理中的套用還剛剛起步,隨著中國經濟的發展,高等級公路的快速修建和GPS技術的套用研究的逐步深入,其在道路工程中的套用也會更加廣泛和深入,並發揮更大的作用。

數據接口格式:這得細談談。GPS可以輸出實時定位數據讓其他的設備使用,這就牽扯到了數據交換協定。幾乎現在所有的GPS接收機都遵循美國國家海洋電子協會(National Marine Electronics Association)所指定的標準規格,這一標準制訂所有航海電子儀器間的通訊標準,其中包含傳輸資料的格式以及傳輸資料的通訊協定。NMEA協定有0180、0182和0183三種,0183可以認為是前兩種的超集,現在正廣泛的使用,0183有幾個版本,V1.5 V2.1。所以,如果大家的GPS接收機如果要聯上筆記本里通用的GPS導航程式,比如OZIEXPLORER和俺的GPSRECEIVER,就應該選擇NEMA V2.0以上的協定。NMEA規定的通訊速度是4800 b/S。現在有些接收機也可以提供更高的速度,但說實話,沒有什麼用,4800就足夠了。

熱門詞條

聯絡我們