Kac-Moody代數

Kac-Moody代數

Kac–Moody代數是一個李代數,通常無限維,其定義自(Victor Kac所謂的)廣義根系。Kac–Moody 代數的套用遍及數學和理論物理學。

定義

假定以下材料:

Kac-Moody代數 Kac-Moody代數
Kac-Moody代數 Kac-Moody代數

——一個r秩廣義嘉當矩陣(generalised Cartan matrix)

Kac-Moody代數 Kac-Moody代數
Kac-Moody代數 Kac-Moody代數

———— 一個 2n−r 維復向量空間

Kac-Moody代數 Kac-Moody代數
Kac-Moody代數 Kac-Moody代數

———— 的對偶空間

Kac-Moody代數 Kac-Moody代數
Kac-Moody代數 Kac-Moody代數

———— 中n枚相互線性獨立的元,稱為對偶根(co-root)

Kac-Moody代數 Kac-Moody代數
Kac-Moody代數 Kac-Moody代數

———— 中n枚線性相互線性獨立的元,稱為根(root)

Kac-Moody代數 Kac-Moody代數

上述各元滿足

Kac-Moody代數 Kac-Moody代數

Kac–Moody代數

Kac-Moody代數 Kac-Moody代數

由符號 e, f (i=1,..,n) 及空間 生成:

以上各元滿足以下關係:

Kac-Moody代數 Kac-Moody代數

Kac-Moody代數 Kac-Moody代數
Kac-Moody代數 Kac-Moody代數

;其中 ;

Kac-Moody代數 Kac-Moody代數
Kac-Moody代數 Kac-Moody代數

,其中 ;

Kac-Moody代數 Kac-Moody代數
Kac-Moody代數 Kac-Moody代數

,其中 ;

Kac-Moody代數 Kac-Moody代數
Kac-Moody代數 Kac-Moody代數

,其中 ;

,其中e出現1-c次;

Kac-Moody代數 Kac-Moody代數

,其中f出現1-c 次。

Kac-Moody代數 Kac-Moody代數

(其中 )

一個 實(維數可以無限)李代數亦可稱為Kac–Moody代數,如果復化是 Kac–Moody代數的話。

釋義

Kac-Moody代數 Kac-Moody代數

是此 Kac–Moody 代數的一嘉當子代數。

若g是 Kac–Moody 代數的一元,使得

Kac-Moody代數 Kac-Moody代數
Kac-Moody代數 Kac-Moody代數

其中 ω 是 的一元,

Kac-Moody代數 Kac-Moody代數
Kac-Moody代數 Kac-Moody代數

則稱g為權(weight) ω的。我們可分解一Kac–Moody 代數成其冪空間,則嘉當子代數的冪為零, e的冪為α*,而 f的冪為−α*。若二冪特徵向量的李括弧非零,則其冪是二冪之和。(若 ) 則 一條件即指 α* 都是簡單根。

相關詞條

相關搜尋

熱門詞條

聯絡我們