細胞遷移

細胞遷移

細胞遷移(英文:cellmigration,與celllocomotion同義,中文也有譯作細胞移行、細胞移動或細胞運動)指的是細胞在接收到遷移信號或感受到某些物質的濃度梯度後而產生的移動。過程中細胞不斷重複著向前方伸出突足,然後牽拉胞體的循環過程。

病理簡介

細胞遷移細胞遷移
細胞骨架和其結合蛋白是這一過程的物質基礎,另外還有多種物質對之進行精密調節。若以移動方式與型態來比較,細胞遷移是通過胞體形變進行的定向移動,這有別於其他﹔如細胞靠鞭毛纖毛的運動、或是細胞隨血流而發生的位置變化,而且就移動速度來看,相比起後兩者,細胞遷移要慢得多。舉例而言:成纖維細胞的移動速度為1微米/分,若以精子的平均遊動速度56.44微米/秒,即3384微米/分來比較,兩者約差距3000倍以上角膜細胞(Keratocyte)即使比成纖維細胞快十倍,但是要完成從不萊梅到漢堡這93公里的路程仍需要17123年。而且細胞用力甚輕。成纖維細胞胞體收縮的力只有2×10-7牛頓,而角膜細胞的則是2×10-8牛頓(一牛頓約為人用手舉起一雞蛋所用的力)。但此細胞遷移“步緩力微”的運動特性,卻是細胞覓食、損傷的痊癒、胚胎髮生、免疫、感染和癌症轉移等等生理現象所涉及到的。因此細胞遷移是目前細胞生物學研究的一個主要方向,科學家們試圖通過對細胞遷移的研究,在阻止癌症轉移、植皮等醫學套用方面取得更大成果。也因為細胞遷移獨有的運動特性,成為今生物學熱門研究方向。最新研究發現:Nudel蛋白在細胞遷移過程中通過Cdc42GAP調節Cdc42的活性,從而揭示了一條新的調節Cdc42的信號通路,對於深入了解細胞遷移的調節機制有重要意義。

病理髮現

細胞遷移解聚
1675年,顯微技術的先驅人物安東尼•凡•列文虎克(AntonievanLeeuwenhoek)往英國皇家學會寄出一封信,裡面描寫了細菌的運動。這封信可以說是打開了科學家對細胞遷移研究的第一頁。在往後這300多年時間,人們就一直試圖去理解細胞遷移過程的細節。而細胞遷移的關鍵物質—細胞骨架則要等到20世紀才被發現。

雖然1939年科學家阿爾伯特•山特吉爾吉(A.Szent-Györgyi)就已發現細胞骨架的成分—肌動蛋白肌球蛋白,但是因為電子顯微鏡製作樣本時需要對樣品進行0到4°C的低溫固定,在這樣的溫度下細胞骨架會被破壞,即所謂的“解聚”。所以當時認為細胞質不過是一“蛋白湯”,各種細胞器懸浮於細胞質液(Cytosol)中。

細胞遷移細胞遷移

但在60年代後,人們使用戊二醛常溫固定的方法開始逐漸發現細胞骨架。科學家發現,細胞骨架在這個細胞遷移過程起到承載和支撐的作用。在20世紀末21世紀初,科學家對細胞遷移複雜機理的認識有了非常大的進步,對細胞與基質的粘著,非對稱性極化和胞內分層運動都有了進一步的了解。但是整個過程其實仍未被了解透徹,很多中間過程就是連起作用的物質都未明。科學家對其中部分需要進行假設,再進一步通過實驗去證實。

研究技術

細胞遷移細胞遷移
為了研究某一蛋白質在細胞遷移中所扮演的角色,一般來說科學家可以將某蛋白的編碼基因進行突變,甚至套用新近的RNAi現象,或者加入該蛋白質的阻斷劑(inhibitor)來抑制某一個蛋白質的表現,並分析此抑制對於細胞遷移的影響,反而得知被抑制的蛋白質與細胞遷移的作用。

新科技對細胞遷移研究起到了極大的推動作用。科學家通過ECIS技術(ElectricCell-substrateImpedanceSensing;電子細胞基質阻抗判斷)可以觀察到細胞在傳統細胞培養甚至是液體環境中的移動行為。根據ECIS技術觀測細胞電學參數的能力,ECIS技術還可以量化測量腫瘤細胞遷移過程中細胞層形態變化。同樣是在腫瘤研究領域,ATIM(Fluorescence-AssistedTransmigrationInvasionandMotilityAssay,螢光協助轉移侵入和運動分析法)提供了快速定量細胞侵入(細胞從一個區域進入另一區域)的更好方法,允許檢測大量樣品和不同條件下時間依賴性侵入。

更重要的是,這一系統可以方便地通過在多孔膜上增加胞外基質的厚度來監測細胞侵入結構的深度。韓國延世大學的朴宗哲和朴峰珠則發展出一套細胞跟蹤系統。它是由計算機輔助的時間流逝顯示微觀複製系統,其中有影象形成過程軟體,其程式編制含有自動影象分析和自設計CO2微小細胞培育器,它的功能是在一個倒置顯微鏡平台上,對於細胞遷移進行迅速而精確的分析,從而形成對於細胞的培育。目前已知他們運用這一計算機輔助系統計算了外細胞間質(ECMs)覆蓋表面的細胞遷移過程。

斑馬魚是目前在該領域最常用於研究的生物。細胞遷移是脊椎動物胚胎髮育的核心過程之一。細胞從原分裂生成的部位移動到目的部位就是細胞的遷移。斑馬魚有著很大的優勢,首先是其胚胎能在母體外發育,速度快,受精24小時後身體的器官已大部分就位。而且斑馬魚繁殖量大,容易對之進行變異。還有其胚胎透明,在高解析度快進攝影技術的幫助下,人們可以很好的觀察到細胞遷移的過程,還可以利用綠色螢光蛋白(GFP)可以觀察到細胞在斑馬魚體內的分布情況。

開關調節

細胞遷移細胞遷移--開關調節
很多時候,遷移的發生是由於細胞感受到了來自外界的信號,例如白細胞感受到細菌釋放的異常蛋白質。隨後,細胞就會打開自身內部的開關,啟動遷移過程。科學家們已經發現了一種名為Cdc42的酶是其中的一個重要開關。當細胞感受信號後,Cdc42就會被鳥嘌呤核苷酸交換因子(GEF)激活,處於“開啟”狀態。被激活的Cdc42分布在細胞運動前緣的區域,引起細胞骨架的極性分布,從而規定了細胞爬行的方向。然而,激活並不是無限的,活性的Cdc42可被GTP酶激活蛋白(GAP)失活,進入“關閉”狀態。

GEF和GAP如同兩隻手,一手打開開關,一手關閉開關。但是,這兩隻手必須協調工作,才能精確地調控細胞遷移。在過去的研究中,科學家們對“打開開關的手”研究甚多,而對“關閉開關的手”如何作用缺乏了解。朱學良研究員的小組發現一種名為Nudel的蛋白質能控制這隻“關閉開關的手”,在必要時能將其與開關隔離,從而保證足夠多的開關處於開啟的狀態。

事實上,Nudel通過與GAP結合,阻擋了GAP對Cdc42的作用。但如果Cdc42過量,也能通過與Nudel競爭結合GAP而失活。在實驗中,研究人員發現缺失了Nudel的細胞爬行受到了很大幹擾,在600分鐘的視頻中,正常細胞已經運動了很長距離,而缺失細胞則幾乎在原地一動沒動。這一研究揭示了一條新的調節細胞遷移開關的信號通路,對於深入了解細胞遷移的調節機制有重要意義。該研究也為認識相關疾病的機理提供了一條新線索。

參與遷移

細胞遷移需要內外因素的配合。外部的因素指的是細胞外的信號分子。內部因素則指細胞的信號傳導系統和執行運動的細胞骨架和分子馬達,還有參與粘著斑形成的各種分子(關於參與形成粘著斑的各種分子請見突出與底質的粘著)。細胞外信號結合胞膜受體完成其使命後,需要細胞內信號分子接力,將運動信息進一步傳給細胞遷移的執行單位——細胞骨架和分子馬達。種類繁多的細胞內信號分子會相互作用,影響後述這兩種分子的分布,結構和活性,達到精細調整細胞運動的目的。

信號分子

細胞外

細胞遷移細胞遷移--細胞外
在一定條件下,細胞外的化學信號能引發細胞的定向移動。這些信號有些時候是底質表面上一些難溶物質,有些時候則是可溶物質。信號分子有很多,可以是肽,代謝產物,細胞壁或是細胞膜的殘片,但是作用方式卻是一樣的,就是與細胞膜表面上的受體結合,啟動細胞內信號,完成一系列的反應,去激活或抑制肌動蛋白結合蛋白的活性,最終改變細胞骨架的狀態。可溶物質通常不是均勻溶解在溶劑中,而是靠近源的區域濃度高,遠離源的區域濃度低,形成所謂的“濃度梯度”。細胞膜上的受體可感受到那些被稱為化學趨向吸引物(chemotacticattractant),並且逆著它們的濃度梯度去追根尋源。某些信號分子甚至會影響細胞移行的速度,這些信號分子則被稱為化學趨向劑(chemokineticagent)。細胞這種因化學分子改變自己移動的行為,被稱為化學趨向性。例如盤基網柄菌(Dictyosteliumdiscoideum)會逆著cAMP濃度梯度的運動。白血球也會受到一些細菌分泌的三肽化學物質f-Met-Leu-Phe(N-甲醯蛋-亮-苯丙氨酸)吸引而往細菌移動,發揮其免疫功能。而在胚胎髮生中的神經嵴細胞則並非靠濃度梯度,而是路標物質識別其去向。但是細胞外基質中也存在著一些蛋白,如硫酸軟骨蛋白多糖(chondroitinsulfateproteoglycan)會與神經細胞的粘著蛋白起作用,對細胞遷移形成阻滯。它會抑制脊髓損傷患者神經損傷區域新突觸的相連與再生。

細胞內
胞外信號種類繁多,但是當它們與細胞膜上受體結合之後,細胞內起作用的途徑卻只有有限的幾種。而與細胞遷移有關的信號傳導過程如下:信號分子結合到膜上受體,或者是激活與受體偶聯的蛋白質—大G蛋白,或者先是激活受體酪氨酸激酶,再激活下游的小G蛋白Ras。G蛋白是一個很大的家族,包括Rho,Rac,Ras等小家族,它們在細胞中扮演著信號傳導開關的角色。當它們與GDP結合時,呈現失活狀態。在鳥嘌呤交換因子(英文:Guaninexchangefactor,簡稱GEF)的幫助下,G蛋白脫離GDP並與GTP結合,進入激活狀態。G蛋白的GTP會被GTP酶激活蛋白(英文GTPase-activatingproteins,簡稱GAP)水解,並釋放出其中的能量,讓G蛋白行使其功能。就是說,G蛋白通過這一GTP/GDP循環在激活/失活狀態中迴旋,傳遞信號。當G蛋白被激活後,它下游的多種分子會被激活。從插圖2中可見,這些下游分子本身會形成網路,相互制約,或者是相輔相成。它們調控著細胞遷移中各個方面。它們作用的詳細情況請見文章中的相應章節。而致癌物質也可以通過這些信號傳導通路發揮其負面作用,如強烈致癌物質佛波酯(Phorbolester)。佛波酯會不可逆地激活細胞的RasGRP3/4,以激活Ras,Ras會再激活蛋白激酶C(ProteinkinaseC,PKC)。後者是調節細胞分裂和分化的酶。它被佛波酯不正常的激活,有可能對癌症的產生起促進作用。研究還發現,佛波酯對黑素瘤(melanoma)細胞轉移到肺部有促進作用。而細菌者,如志賀氏菌會在宿主胞膜上打洞,向細胞質注入效應蛋白質,激活宿主Rac和Cdc42,調整細胞的微絲網路,以使自己順利進入宿主內。

細胞骨架
細胞骨架的定義分為狹義和廣義兩種,前者是微絲微管和中間纖維的總稱,它們存在於細胞質內,又被稱為“胞質骨架”。後者還包括細胞外基質(extracellularmatrix),核骨架(nucleoskeleton)和核纖層(nuclearlamina)。細胞骨架是細胞內運動,細胞器固定,細胞外型維持,信號傳導和細胞分裂的物質基礎之一。

細胞遷移細胞遷移

微絲和其結合蛋白
微絲是由肌動蛋白(Actin)組成的直徑約為7nm纖維結構。肌動蛋白單體(又被稱為G-Actin,全稱為球狀肌動蛋白,GlobularActin,下文簡稱G肌動蛋白)為球形,其表面上有一ATP結合位點。肌動蛋白單體一個接一個連成一串肌動蛋白鏈,兩串這樣的肌動蛋白鏈互相纏繞扭曲成一股微絲。這種肌動蛋白多聚體又被稱為纖維形肌動蛋白(F-Actin,FibrousActin)。
微絲能被組裝和去組裝。當單體上結合的是ATP時,就會有較高的相互親和力,單體趨向於聚合成多聚體,就是組裝。而當ATP水解成ADP後,單體親和力就會下降,多聚體趨向解聚,即是去組裝。高ATP濃度有利於微絲的組裝。所以當將細胞質放入富含ATP的溶液時,細胞質會因為微絲的大量組裝迅速凝固成膠。而微絲的兩端組裝速度並不一樣。快的一端(+極)比慢的一端(-極)快上5到10倍。當ATP濃度達一定臨界值時,可以觀察到+極組裝而-極同時去組裝的現象,被命為“踏車”。微絲的組裝和去組裝受到細胞質內多種蛋白的調節,這些蛋白能結合到微絲上,影響其組裝去組裝速度,被稱之為微絲結合蛋白(associationprotein)。微絲的組裝先需要“核化”(nucleation),即幾個單體首先聚合,其它單體再與之結合成更大的多聚體。Arp複合體(Arp:Actinrelated-protein)是一種能與肌動蛋白結合的蛋白,它起到模板的作用,促進肌動蛋白的多聚化。Arp複合體由Arp2,Arp3和其它5種蛋白構成,也寫成Arp2/3複合體。封閉蛋白(end-blockingprotein)則是微絲兩端的“帽子”。

當這種蛋白結合到微絲上時,微絲的組裝和去組裝就會停止。這對一些長度固定的蛋白來說很重要,如細肌絲。而前纖維蛋白(Profilin,或譯G肌動蛋白結合蛋白)則是促進多聚的,相應地促解聚的蛋白則有絲切蛋白(Cofilin)。纖絲切割蛋白(filamentseveringprotein),如溶膠蛋白(Gelsolin),能將微絲從中間切斷。粘著斑蛋白(Vinculin)則能固定微絲到細胞膜上,形成粘著斑。交聯蛋白(cross-linkingprotein)有兩個以上肌動蛋白結合位點,起到連線微絲的作用,其中,絲束蛋白(fimbrin)幫助微絲結成束狀,而細絲蛋白(filamin)則將微絲交聯成網狀。

微管
微管是另一種具有極性的細胞骨架。它是由13條原纖維(protofilament)構成的中空管狀結構,直徑22—25nm。每一條原纖維由微管蛋白二聚體線性排列而成。微管蛋白二聚體由結構相似的αβ球蛋白構成,兩種亞基均可結合GTP,α球蛋白結合的GTP從不發生水解或交換,是α球蛋白的固有組成部分,β球白結合的GTP可發生水解,結合的GDP可交換為GTP,可見β亞基也是一種G蛋白。微管和微絲一樣,具有生長速度較+端和較慢的-端。微管在細胞內起支撐作用。另外它還是兩種運載分子:驅動蛋白(Kinesin)和發動蛋白(Dynein),的行走軌道。微管,可能連帶負在其上的發動蛋白會發放信號促進粘著斑的解聚,後者是粘著斑的周轉和尾部與底質分離過程中重要的一步。

中間纖維
中間纖維(intermediatefilaments,IF)直徑10nm左右,介於微絲和微管之間。與後兩者不同的是中間纖維是最穩定的細胞骨架成分,它主要起支撐作用。中間纖維在細胞中圍繞著細胞核分布,成束成網,並擴展到細胞質膜,與質膜相連結。中間纖維沒有正負極性。角蛋白是中間纖維中的一類,分子量約40~-0KD,出現在表皮細胞中,在人類上皮細胞中有20多種不同的角蛋白,分為α和β兩類。角蛋白賦予細胞體一定的剛性。癌細胞需要對角蛋白進行重新分布,以使自身變得柔韌,可以通過基底膜或血管壁上的細小孔洞。

分子馬達

細胞遷移分子馬達
分子馬達(Motorprotein)是一類蛋白質,它們的構象會隨著與ATP和ADP的交替結合而改變,ATP水解的能量轉化為機械能,引起馬達形變,或者是它和與其結合的分子產生移動。就是說,分子馬達本質上是一類ATP酶。例如肌肉中的肌球蛋白(Myosin)會拉動粗肌絲向中板移動,引起肌肉收縮。而另外兩種分子馬達:驅動蛋白(Kinesin)和動力蛋白(Dynein),它們能夠承載著分子“貨物”——如質膜微粒,甚至是線粒體溶酶體,在由微管構成的軌道上滑行,起到運輸的作用。例如驅動蛋白的重鏈則會運輸參與粘著斑解聚過程的信號物質。所以在驅動蛋白的重鏈受到抑制的情況下,粘著斑會比正常情況下顯得更大。肌球蛋白是微絲結合蛋白,最早發現於肌肉組織,1970年代後逐漸發現許多非肌細胞的肌球蛋白。其家族有13個成員,每個成員在結構上都分為頭,頸和尾部三個部分,形似豆芽,而組成上則有輕重兩種鏈。其中的調節輕鏈(regulatorylightchain)是肌球蛋白接受調解的位點,就是說,調節輕鏈的磷酸化/去磷酸化狀態影響著肌球蛋白的活性。其中I和II型是研究得最徹底的分子馬達。一些細胞具有突變的肌球蛋白,它們能正常伸出偽足,但是卻不能成功移動。I型肌球蛋白是單體,II型和V型則是二聚體。趨向微絲的+極運動。蛋白的頭部能就尾部作屈伸運動,並在“屈”的時候拉動微絲相對向後運動。肌球蛋白除了參與肌肉收縮外,還被認為是細胞遷移所需的重要分子之一。肌球蛋白非常可能參與了“前進的四個步驟”裡面胞體收縮一步。另外,在細胞突出一端也可觀察到肌球蛋白,它可能是幫助運輸粘著所需要的蛋白質,提高粘著效率。

過程簡述

細胞遷移細胞遷移
細胞遷移的過程可以用右圖闡明。細胞遷移是一系列生理程式的集合,接收到外界信號後(關於外界信號作用於細胞的過程,請見運動方向的確定和極化),細胞內每一個階段都要相應的蛋白質在適當的位置被激活。這一連串的蛋白質的活化並不是同時平行進行,而是有先後順序的。處於懸浮狀態的成纖維細胞,會處於一種所謂閒逛(randomwalk)狀態,或者被稱之為處於各向同性伸展期(Isotropicspreadingphase),它在不斷伸出偽足後又不斷將之收回,可能是要在就近一探其究竟。細胞或者是靠外界信號物質濃度梯度(請見化學趨向性),或是利用某些特定分子作為路標信號,確定前進的方向。細胞內部的分子會因應需要發生變化,一些蛋白質和離子會重新排列,顯示出不均勻分布,就是出現了所謂的極性,而這個過程請見極化。

值得一提的是,細胞在前進的過程中,可以不斷改變其前進的方向。在顯微鏡下觀察大腸桿菌(Escherichiacoli)尋找食物時的運動,可見細胞先向前直線移動一段時間,然後會停下來並且調整一下方向,然後又再作直線移動。如此不斷反覆。可見細胞內調控能力的有效和精確。細胞極化後,細胞的前端會伸出極狀足(請見細胞前端突出)。極狀足伸出後,會與細胞前方的底質附著;粘著處會形成一種固定結構,名曰粘著斑(請見突出與底質的粘著)。此時,胞體主體會被牽拉向前(請見細胞體前移);最後細胞的後端與底質剝離(請見牽引尾部往前)。這樣前進的4個步驟完成,並準備下一次循環。不同的細胞,它們直線運動的速度和持續的時間是不同的。使用分子干擾技術可以很好的研究這兩者。一般來說,細胞直線前進速度越慢,其保持直線運動的時間就越長,例外是魚的上皮細胞,它能夠在快速遷移的同時,顯示出長時間保持直線運動的能力。

極化病理

細胞遷移細胞遷移
當細胞胞膜上的受體接觸到周圍環境裡面的遷移信號分子之後,細胞內部與細胞遷移有關的物質會重新分布,細胞顯出“前”和“後”兩端,為遷移做準備。物質如β機動蛋白的mRNA,Arp2/3複合體還有一些化學感受器,會呈現出前多後少的分布狀況,與之相反的是Ca2+。雖然兩種物質有著不同的分布趨勢,但是它們的目的都是一樣的,就是促進細胞的移動性。β機動蛋白的mRNA在細胞收到遷移信號之後會集中在細胞前端,為這裡提供微絲單體。而為Arp2/3複合體七條肽鏈編碼的mRNA也會齊集在突出端。

這種mRNA的局部匯聚反過來卻需要微絲還有微管的協助。這種mRNA匯聚的發生對細胞遷移有極大的好處。一方面降低了細胞對之調控或降解的難度,另一方面它們的新生翻譯產物互相靠近又有利於複合體的快速組裝(這種現象被稱做共同翻譯組裝,英文:cotranslationalassembly),同時也保證了各自的正確摺疊,避免與其他細胞成分發生負面的相互作用。

鈣離子的分布與上面提到的不同。Ca2+前端分布濃度低,而尾端高。如果在一遷移中的白細胞側邊放入遷移信號物,人們發現細胞內的鈣離子水平先是總體升高,然後再分布成前低後高的狀態,細胞轉彎。如果此時撤銷新放入的信號,白細胞會接著按照新的信號物濃度繼續其遷移。很多微絲結合蛋白,如I和II型肌球蛋白,凝膠溶素輔肌動蛋白(輔肌動蛋白)和絲束蛋白(fimbrin)都受到鈣離子的調控。因此鈣離子是細胞由溶膠變凝膠(sol-to-gel)過程中重要的一員。前端蓋離子濃度低,能激活I型肌球蛋白,抑制微絲分解蛋白,撥轉由鈣離子調控的微絲交聯蛋白,因此有利於微絲網路的形成。而尾部高鈣離子濃度則會導致微絲的解聚,激活凝溶膠蛋白,促成溶膠狀態的出現,而且會激活II型肌球蛋白,使外皮微絲網路收縮。總的說來,鈣離子的胞內濃度梯度對微絲的周轉起到了很重要的作用。

運動步驟

細胞遷移細胞遷移
當人們觀察角膜細胞的遷移時,可看到細胞體外形的改變。這可以類比於人的步行過程,首先是確定前進方向,然後是重複一系列動作循環,即一隻腳先往前踏出,並且在地上踏實,而鞋紋則有防止向後滑的功能,再是上身重心前移,最後是後腳提起並向前腳靠攏,完成一個循環。而其中的每個步驟,都受到一個精巧的調節網路控制,以保證原料和能量的合理利用和細胞遷移的有效進行。為日後的腸道,上皮與囊胚壁接觸之處則是日後海膽的口部。脊椎動物的神經嵴細胞,在胚胎期會不斷從背側向腹側移行。

其中一部分移行於外胚層下方,將來會分化為色素細胞,而那些行走的稍深一點的細胞,會形成後來交感神經的神經節細胞腎上腺髓質。而頸部骶部神經嵴細胞則會沿著身體縱軸移到腸壁。就是說,日後的組織腸神經叢,神經節神經元,腎上腺的嗜鉻細胞(chromaffin)都是由神經嵴細胞遷移分化得出的。值得注意的是,在此過程中,沿途的不遷移細胞可能會影響遷移細胞的行為,改變它們的去向,甚至決定遷移細胞是否能存活。

同來自神經嵴的性細胞,血細胞前體和色素細胞都受到一種Kit—Steel因子機制的調節。Kit是一種跨膜受體,其配體是Steel因子。沿途的細胞或者是終點處的細胞會表達Steel因子,激活遷移經過的細胞上的Kit受體。而Kit受體的激活是這些細胞存活和增殖的前提。在一個個體中,兩者之中的任一者出現突變,患者的體色,血細胞供應和性細胞的形成都會出現異常,例如患者額頭可見一白斑。

相關詞條

相關搜尋

熱門詞條

聯絡我們