昴宿星團

昴宿星團

昴宿星團,簡稱昴星團,又稱七姊妹星團,梅西爾星雲星團表編號M45,是一個大而明亮的疏散星團,位於金牛座,裸眼就可以輕易的看見,肉眼通常見到有六顆亮星。圖示:史匹哲太空望遠鏡以紅外線拍攝的昴宿星團,顯示出伴隨著的塵埃。

昴宿星團, 簡稱昴星團,又稱七姊妹星團,
(圖)J200曆元觀察到的昴宿星團J200曆元觀察到的昴宿星團
梅西爾星雲星團表編號M45,是一個大而明亮的疏散星團, 位於金牛座,裸眼就可以輕易的看見,肉眼通常見到有六顆亮星。昴星團的視直徑約2°,形成斗狀。成員星數在200個以上,是一個很年輕的星團。昴星團也是一個移動星團。

昴星團坐標簡述

赤經 03 : 47.0(小時:分)

(圖)昴宿星團昴宿星團

赤緯 +24 : 07(度:分)

距離 0.38(千光年)

視亮度 1.6(星等)

視大小 110.0(角分)

由於字形相近,昴(mao)經常被誤寫誤讀為昂(áng)。

昴宿星團的雲氣是最接近地球星雲之一,並且可能是最著名的。它有時被稱為瑪亞女神的星雲,這種錯誤或許是因為反射星光的雲氣本質上是環繞在瑪亞的四周所造成的。

這群以藍色高溫恆星為主的星團是在最近的一億年形成的,由微量的灰塵形成的反射星雲圍繞在最亮星的附近,起初被認為是星團形成時留下的,但是現在知道只是目前正在經過,與星團無關的塵埃雲。天文學家估計這個星團大約可以再存在二億五千萬年,之後就會被銀河系的引力扯碎,散布在鄰近的星空之中。

觀察的歷史

昴宿星團在北半球的冬季和南半球的夏季是很突出的天體,從上古時代的所有古文明國,包括澳大利亞土著毛利人、中國和馬雅人(稱之為Tzab-ek)、阿茲台克人、北美洲的蘇族。一些古希臘天文學家認為它是個明確的星座,並且在赫西德、荷馬的伊利亞特奧德賽(冒險之旅)之中被提到;在聖經中也曾被提及三次(約伯記 9:9, 38:31; 阿摩司書 5:8)。在印度神話中,昴宿星團(Krittika)是戰神(Skanda)的六個母親,他有六種不同的相貌,可以逐一的顯現出來;有些回教的學者認為昴宿星團(At-thuraiya)是可蘭經中的Najm。

(圖)昴宿星團昴宿星團

長久以來,他們就被知道是一個彼此相關的星群,而非正巧在同方向上。在1767年,牧師約翰·米契爾就已經計算過如此多的亮星出現在同方向上的機率只有五十萬分之一,並且因而認定昴宿星團和許多其他的星團都是彼此間在物理有關聯的。首度研究恆星的自行時,它們被發現都以相同的速率、向著相同的方向移動,橫越過天空,這進一步的顯示他們是有關聯的。

梅西爾測量包括M45在內的一些星團的位置,編製成類似彗星天體目錄,在1771年發行。因為多數的梅西爾天體都是昏暗、類似彗星而易被混淆的天體,似乎沒有理由列入昴宿星團,所以梅西爾可能因為覺得奇特而收錄了昴宿星團,一起的還有獵戶座星雲蜂巢星團。還有一個可能就是梅西爾只是單純的希望他的目錄能比對手拉卡伊的更為龐大 - 在1755年發行,收錄了42個天體,所以梅西爾加入了幾個明亮的、眾所周知的天體在它的目錄中。

距離

在被稱為宇宙距離的階梯上,昴宿星團的距離是很重要的第一步,依序完成整個宇宙的一序列距離標尺。第一步的大小是校準整個階梯的基礎,因此使用了許多方法來測量第一步的標尺。由於昴宿星團是如此的靠近地球,相對的,它的距離也很容易測量。正確的距離知識,允許天文學家使用赫羅圖來測量星團的距離,與距離已知的星團比較圖形,就可以估計待測量星團的距離。其他的方法可以延伸測量的距離從疏散星團至星系,乃至於星系團,宇宙距離的階梯就被建構起來了。對昴宿星團距離的認知,最終可以影響到天文學家對宇宙年齡的理解和未來的演變。

(圖)在2005年初,梅克赫茲彗星經過昴宿星團的附近在2005年初,梅克赫茲彗星經過昴宿星團的附近

依巴谷衛星發射之前,一般認知的昴宿星團與地球的距離是135秒差距。依巴谷衛星利用星團中恆星視差 —一種直接和準確的技術,測量的結果是118秒差距,使天文學家大為驚訝。後續的工作發現依巴谷衛星對昴宿星團距離的測量是錯誤的,但是並不知道發生錯誤的原因。目前認為昴宿星團距離的上限值大約是135秒差距(相當於440光年)。

組成

這個星團的半徑大約是8光年,而潮汐半徑達到43光年。雖然圖中未能排除聯星,但統計星團中被證實的成員已經超過1000顆。它們主要是年輕、高溫的藍色星,依據觀測環境的不同,裸眼最多能看見14顆亮星。最明亮的恆星排列有些類似於大熊座小熊座,星團的總質量估計大約是太陽質量的800倍。

(圖)史匹哲太空望遠鏡以紅外線拍攝的昴宿星團,顯示出伴隨著的塵埃史匹哲太空望遠鏡以紅外線拍攝的昴宿星團,顯示出伴隨著的塵埃

星團內有許多棕矮星,質量低於太陽的8%,在核心沒有足夠的溫度和壓力引發核融合成為真正的恆星。它們的數量大約占星團成員的25%,但質量卻低於總質量的2%。天文學家已經盡了最大的努力在昴宿星團和其他年輕的星團中尋找和分析棕矮星,因為棕矮星在年輕的星團中還算明亮和容易觀測,而在較老的星團中都已經黯淡而更難以研究。

目前在星團中也發現了一些白矮星,但星群中正常的年輕恆星還沒有達到可以期望演化成白矮星的年齡,因為這個過程通常需要幾十億年的時間。一般相信,這不是由單一的低或中質量恆星演化過來的,這些白矮星的前身一定是聯星系統中的大質量恆星。大質量恆星在快速的演化中將質量傳輸給伴星,結果使演化成為白矮星的腳步更為加快,但是這個過程的細節還需要對深奧的重力有更多了解,才能更確實的解釋作用的機制[可疑] 。

白矮星-內部結構模型圖白矮星-內部結構模型圖

年齡與未來的演化

昴星團距離太陽400光年,因含有早B型星,從天文時間尺度來說正處在年少時期。質量為九個太陽的B型星,若收縮到主星序,耗盡其核部的並開始膨脹到紅巨星,照估計需歷時2100萬年左右。因此,這個值就應該是疏散星團的年齡。可是,唯有昴星團的顏色一光度圖卻又清楚地表明,僅含0.2太陽質量的那些恆星業已渡過了初始收縮階段,基本上處於零齡主星序上.照最近恆星演化理論估計,質量為0.2太陽的恆星收縮到零齡主星序所需時間, 大致為60000萬年。那么,昴星團的年齡到底是多少呢?究竟是2100萬年還是60000萬年? 

(圖)昴宿星團昴宿星團

 

事實上,矛盾並不像看起來那樣尖銳。赫爾比希認為,在形成大質量的恆星之前,先已由星雲物質形成了小質量的恆星。如果晚型主序星首先形成,它們就會在早型星收縮到主星序的相同時間內到達零齡主星序,然後燃燒它們核部的氫, 並開始向紅巨星階段膨脹。這一理論好像得到了觀測的支持。關於小質量恆星形成較早的又一證據是金牛一御夫座暗星雲,在這些星雲中大量含有暗弱的紅星,而不含有亮的藍星。

所有這一切都表明,擁有大約三百顆星的昴星團開始形成於六億年以前,一直持續到終於形成了B型星.這些非常亮的恆星輻射著極其豐富的紫外線,它們已把氣體電離並徹底吹散,只在銀河系中殘留下一些氣體的痕跡。隨著氣體的離去,恆星的形成過程也就趨於停止。琢磨一下玫瑰星雲很有意思的,它的中心有一群非常亮的恆星,這團星雲可能就是因發生這種從中央向外吹散氣體的過程而形成的。這一構想或許能解釋這種異常有趣的氣體與恆星集合體的環狀結構.

昴星團星雲是藍色的,這意味著它們是反射星雲,反射著位於它們附近(或者之中)的明亮恆星的光線。這些星雲中最明亮的部分,即圍繞在昴宿五周圍的星雲,是1859年10月19日被(義大利)威尼斯的Ernst Wilhelm Leberecht (Wilhelm) Tempel利用4英寸折射鏡發現的;它被收入NGC星表中,編號為NGC 1435Leos Ondra提供了一份線上的Wilhelm Tempel傳記,以及一幅昴宿五星雲的素描,經同意歸入到本資料庫中。星雲向昴宿四延伸的部分在1875年被發現(即NGC 1432),圍繞著昴宿六昴宿一,昴宿增六和昴宿二的星雲在1880年被發現。完整的昴星團的複雜性,直到1885年到1888年間,巴黎的Henry兄弟和英國的Isaac Roberts發明了第一架天文照相機之後,才被揭露出來。1890年,E.E. Barnard發現星雲物質有一個非常靠近昴宿五的恆星狀聚集中心,它被編入IC星表,編號為IC 349。1912年,Vesto M. Slipher分析了昴星團星雲的光譜,揭露了它們的反射星雲本質,因為它們的光譜與照亮它們的恆星的光譜一模一樣。

(圖)昴宿星團昴宿星團

經由星團和恆星演化理論模型的比較,從赫羅圖可以估計出星團的年齡。使用這種技術,估計昴宿星團的年齡再7500萬至1億5000萬年之間。在估計年齡上的擴散度是恆星演化模型不確定的結果,特別是模型中包含了所謂的對流過沖(對流超射)現象。這是恆星內部的對流層是否擊穿非對流層的現象,結果可能使年齡顯得較高。

另一種估計星團年齡的方法是搜尋低質量的恆星。一般主序帶上的恆星,鋰在核融合反應中會很快的被摧毀,因為它的燃燒點只有250萬K,而質量最大的棕矮星最後會將鋰摧毀。因此測量星團內質量最高的棕矮星是否有鋰的存在,可以估計出星團理想的年齡。使用這種方法估計的昴宿星團年齡是1億1500萬歲。

星團的相對運動最終將推導出它們的可能的位置,從地球觀察未來數千年的位置,將會經過目前獵戶座的腳下。同樣的,像多數的疏散星團一樣,昴宿星團的沒有足夠的引力維繫整個集團,當它與其他的集團接近或遭遇時,有些成員可能會被潮汐的重力場拋射出去。計算的結果認為在2億5000萬年後,昴宿星團將會因為與巨分子雲的重力互動作用而消失,而且銀河系的螺鏇臂也會加速它的崩潰。

歐洲航天局天文測量衛星Hipparcos最近直接用視差法測量了昴星團的距離;根據這些測量,昴星團距我們380光年(此前採用的數值是408光年)。新的距離數值需要對昴星團中恆星相對較暗的視星等給出解釋。

反射星雲

在理想的觀測條件下,有些跡象顯示雲氣只是在星團的附近,特別是在長期曝光的照片中。這只是一個反射星雲,因為塵埃反射高溫、年輕恆星的光而呈現藍色。

(圖)昴宿星團昴宿星團

這些塵土以前被認為是形成星團時殘留的,但是星團通常需要大約一億年才能形成,因此當初的塵土早就該被輻射壓驅散了。換言之,很單純的只是星團行經一處星際物質較為多的區域造成的現象。

研究顯示,這些塵土的分布是不均勻的,並且在視線方向上是沿著星團行經的路徑分為主要的兩層。這些層次也許是因為塵土向著恆星移動時,受到輻射壓力而減速造成的。

神話和文藝

中國古代把其中的亮星列為昴宿。有關的傳說神話很多,也被稱為“七姊妹星團”。一般肉眼能看到6顆星,眼力好的話能看到更多,因此它能用來檢驗你視力好壞或者天氣晴朗情況。

在中國古代,昴宿為二十八宿之一,這些恆星則稱昴宿七(Atlas)、昴宿增十二(Pleione)、昴宿四(Maia)、昴宿一(Electra)、昴宿增十六(Celaeno)、昴宿二(Taygeta)、昴宿五(Merope)、昴宿六(Alcyone)和昴宿三(Sterope)。

(圖)七仙女七仙女

古代,確實能看到7顆,就好似七個仙女,身著藍白色紗衣在雲中漫步和舞蹈。後來不知道在哪一年,有一顆星突然暗了下去,不能見到了,人間在詫異的同時,開始流傳著這么一個——“七小妹下嫁”的美麗傳說,黃梅戲《天仙配》說的就是她們的故事

希臘神話里七仙女星團是的七位仙女的化身,她們是擎天神阿特拉斯(Atlas)和其妻普勒俄涅(Pleione)的七個美貌的女兒——瑪亞(Maia)、伊萊克特拉(Electra)、塞拉伊諾(Celaeno)、泰萊塔(Taygeta)、梅羅佩(Merope)、亞克安娜(Alcyone)和斯泰羅佩(Sterope)。做為擎天神的女兒,畢宿也是昴宿的姐妹們,英文的名稱是源自羅馬神話,但語源並不確定。

古代日本人把昴星團看成美麗的首飾,對此擁有特別的情意結,有日本流行歌曲以此作題材,如歌唱家谷村新司代表作《すばる》(即關正杰的粵語歌曲《星》與羅文的《號角》),日本國立天文台1998年在夏威夷落成啟用的一台8.2米望遠鏡稱作“昴”(Subaru),富士重工業生產的汽車品牌為Subaru等等。

昴星團各個星的位置坐標

昴星團最亮的 6顆星自西向東的星名、光電目視星等和MK光譜分類依次是:

(圖)昴宿星團昴宿星團

金牛座17(昴宿一),3.71,B6Ⅲ;

金牛座19(昴宿二),4.31,B6Ⅳ;

金牛座20(昴四),3.88,B7ⅢSn;

金牛座23(昴宿五),4.18,B6V;

金牛座η(昴宿六),2.87,B7Ⅲ;

金牛座27(昴宿七),3.64,B8Ⅲ。

這些星都在作快速自轉。藍巨星昴宿六表面有效溫度約13,500K,總輻射光度約為太陽的2,200倍,半徑約為太陽的8倍,但赤道自轉一周所需時間還不到3天。昴宿七是軌道周期為好幾年的分光雙星。昴星團有百分之七的成員星是軌道周期小於 100天的雙星。著名氣殼星金牛座28(即金牛座BU)就在昴星團內。在昴星團方向已經發現了460個以上的耀星。這個星團沒有紅巨星。照片上看到的昴星團亮星附近的星雲叫作NGC1432,是由星際塵粒反射和散射星光形成的反射星雲。這也許是昴星團恆星形成時剩下的星,但更可能是昴星團在運動中遇到的物質。

21世紀的意義

在幽浮學中有些人相信"類人"的說法,認為昴宿星團內的數顆行星上居住著昴宿星人,但天琴星系才是昴宿人及地球人類的發源地。

在美國發行的蓋子藝術Xexyz曾經選用了一幅昴宿的圖。

深入探究

昴星團的Trumpler類型被定為II,3,r型(Trumpler,根據Kenneth Glyn Jones的說法)或者I,3,r,n型(Götz和Sky Catalog 2000),意味著這個星團似乎是獨立的,向中心高度聚集或是中等聚集,其中恆星亮度的分布範圍較大,成員星較多(超過100顆)。  

(圖)短時間的曝光只能顯示出朦朧的雲氣短時間的曝光只能顯示出朦朧的雲氣

昴星團中有些高速自轉的恆星,表面的鏇轉速度為150到300千米/秒,這在光譜型為(A-B)型的主序星中是普遍現象。由於這種鏇轉,它們一定是(扁圓的)橢球體,而不是球體。這種鏇轉之所以能夠被發現,是因為它會使得光譜吸收線變得更寬,更發散,因為相對於恆星的平均徑向速度而言,位於恆星一側的部分恆星表面正在接近我們,而另一側卻在遠離我們。這個星團的快速自轉恆星中最突出的例子是昴宿增十二(Pleione),這也是顆變星,亮度介於4.77和5.50等之間(Kenneth Glyn Jones)。O. Struve曾經預言這樣的鏇轉會導致恆星拋出氣體包層,1938年到1952年間,對昴宿增十二的光譜分析觀測到了這一現象。

Cecilia Payne-Gaposhkin提到昴星團中包含著一些白矮星(WD)。這給恆星演化提出了一個特殊的問題:白矮星是怎么出現在一個如此年輕的星團中的?由於存在著不止一顆白矮星,因此可以相當肯定這些恆星原來都是星團的成員星,並不都是被捕獲的場恆星(總之,捕獲過程在這樣一個相當鬆散的疏散星團中效率並不高)。[譯註:場恆星,field stars,是指獨立的,不成團的恆星。] 按照恆星演化理論,白矮星的質量不可能超過大約1.4倍太陽質量的上限(錢德拉塞卡極限,the Chandrasekhar limit),更大質量的白矮星會因為它們自身的重力而塌縮。但是如此低質量的恆星演化得極慢,需要幾十億年才能演化到最後階段,昴星團短短1億年的年齡顯然是不夠的。

(圖)昴宿星團昴宿星團

唯一可能的解釋是,這些白矮星曾經是大質量恆星,因此它們可以快速演化,但是一些原因(比如強烈的恆星風,鄰近恆星的質量吸積,或者快速自轉)使他們失去了大部分質量。結果,它們可能將大部分質量都拋入太空,形成了行星狀星雲。總之,最後剩下來的恆星(即原來的恆星核)質量一定低於錢德拉塞卡極限,這樣它們才可能演化到穩定的白矮星階段,從而被我們觀測到。

1995年以來對昴星團的最新觀測發現了幾個異常類型恆星的候選者,或者說是類似恆星的天體,即所謂的褐矮星(Brown Dwarfs)。這種迄今為止仍然只是假說的天體被認為質量介於巨行星(比如木星)和小恆星(恆星結構理論指出最小的恆星,即在其生命階段中可以通過核聚變製造能量的天體,質量最少不得低於太陽質量的百分之6到7,即60到70倍木星質量)之間。因此褐矮星的質量應該擁為木星質量的10到60倍左右。理論上,它們可以在紅外光波段被觀測到,直徑與木星相當或更小(143,000千米),密度是木星的10到100倍,因為強得多的引力會將它們壓得更緊。 即使用肉眼,在一般的條件下,昴星團也是相當容易找到的,位於明亮的紅巨星畢宿五(Aldebaran,金牛座Alpha,87號星,0.9等,光譜型K5 III)西北方接近10度的位置。明顯包圍在畢宿五周圍的,是另一個同樣著名的疏散星團,畢星團(Hyades);現在知道,畢宿五並不是畢星團的成員,只是一顆前景恆星(距離我們68光年,而畢星團的距離為150光年)。

在雙筒鏡或者廣角鏡中,這個星團是個壯觀的天體,在1 1/5度的直徑範圍內可以顯示超過100顆的恆星。對望遠鏡來說,即使在最低放大率下,這個星團也大到也無法在一個視場中看到全貌。星團中擁有許多雙星聚星。昴宿五星雲NGC 1435需要黑暗的天空才能看見,在廣角鏡中觀測效果最佳(Tempel是用一架4英寸望遠鏡發現它的)。

由於昴星團距離黃道較近(只差4度),星團被月亮掩食的現象會經常發生:這是非常吸引人的奇景,尤其對於那些只擁有廉價器材的愛好者來說(事實上,你用肉眼就可以觀測它,不過即使最小的雙筒鏡或者望遠鏡都會增加觀測的樂趣——1972年3月的月掩昴星團是筆者首次業餘天文觀測經歷之一)。這樣的現象可以形象地說明月亮與這個星團之間的相對大小:Burnham指出月亮可以被“塞進由”昴宿六,昴宿一,昴宿五和昴宿二“組成的四邊形內”(在這種情況下,昴宿四,甚至昴宿三都會被月亮擋住)。同樣,行星也會運行到昴星團附近(金星,火星和水星甚至偶爾會從其中穿過),展示出壯麗的景象。

宇宙中有六百兆顆星球、幾千萬個銀河系,我們地球所在的銀河系叫做Milky Way Galaxy,太陽系位於銀河系旁邊獵戶座的鏇臂上,地球繞太陽公轉,而整個太陽系則繞昴宿星團公轉,昴宿星團繞銀河中心公轉,大約每240000年,太陽系會完成一次公轉。

相關詞條

相關搜尋

熱門詞條

聯絡我們