概述
類似希爾伯特問題,2000年,美國克雷數學協會趁著千禧年,也提出了「千禧獎七問題」(Millennium Prize Problems)。據該會所述,這「千禧獎七問題」並不是指導廿一世紀的數學發展,只是蒐集了一些多年來仍未被解決的數學問題,徵求有能之士解決,並且以每題一百萬美元作為獎金,而當中也包括了希爾伯特23問題之一的「黎曼猜想」。
問題 領域 簡介
1、P對NP問題 計算機數學 這個問題就是「P=NP?」看似簡單,而事實上並非如此。P的意思是一些「可以簡單解決的問題」──需時較短便可解決;NP的意思則是一些「可以簡單檢查結果的問題」。很容易知道P是NP的子集,但它們應是相等或是不等呢?2、賀治猜想 代數幾何
3、龐加萊猜想 代數拓撲 這個猜想是關於一個單連通的三維緊緻流型,在拓撲上等價於三維球的猜測。
4、黎曼猜想 數論 這個猜想是關於ζ函式或稱黎曼ζ函式(Riemann Zeta Function)除在直線Re(z)=1/2上以外不具有任何非平庸零點的猜測。平庸零點出現在負偶數。事實上,首1,500,000,000個的結果經己被檢定過是成立,而此猜想的證明將會給質數定理及其有關的理論帶來曙光。
5、楊─米爾斯理論 數學物理
6、尼維亞─史托克斯方桯 流體力學 在十九世紀時,尼維亞─史托克斯方桯已經出現,其後也有不少有關這些方程的解的結果,但仍是較零碎。而數學家一般相信如果能夠對尼維亞─史托克斯方桯的解有系統性的掌握,以及有較牢固的數學理論支持,這些解可能會解決一些流體力學的問題,例如引擎的擾流。
7、伯治─史雲洛頓戴亞猜想 數論
