UASB

1971年荷蘭瓦格寧根(Wageningen)農業大學拉丁格(Lettinga)教授通過物理結構設計,利用重力場對不同密度物質作用的差異,發明了三相分離器。使活性污泥停留時間與廢水停留時間分離,形成了上流式厭氧污泥床(UASB)反應器的雛型。1974年荷蘭CSM公司在其6m3反應器處理甜菜製糖廢水時,發現了活性污泥自身固定化機制形成的生物聚體結構,即顆粒污泥(granular sludge)。顆粒污泥的出現,不僅促進了以UASB為代表的第二代厭氧反應器的套用和發展,而且還為第三代厭氧反應器的誕生奠定了基礎。UASB由污泥反應區、氣液固三相分離器(包括沉澱區)和氣室三部分組成。

引言

厭氧生物處理作為利用厭氧性微生物的代謝特性,在毋需提供外源能量的條件下,以被還原有機物作為受氫體,同時產生有能源價值的甲烷氣體。厭氧生物處理法不僅適用於高濃度有機廢水,進水BOD最高濃度可達數萬mg/l,也可適用於低濃度有機廢水,如城市污水等。
厭氧生物處理過程能耗低;有機容積負荷高,一般為5-10kgCOD/m3.d,最高的可達30-50kgCOD/m3.d;剩餘污泥量少;厭氧菌對營養需求低、耐毒性強、可降解的有機物分子量高;耐衝擊負荷能力強;產出的沼氣是一種清潔能源。
在全社會提倡循環經濟,關注工業廢棄物實施資源化再生利用的今天,厭氧生物處理顯然是能夠使污水資源化的優選工藝。近年來,污水厭氧處理工藝發展十分迅速,各種新工藝、新方法不斷出現,包括有厭氧接觸法、升流式厭氧污泥床、檔板式厭氧法、厭氧生物濾池、厭氧膨脹床和流化床,以及第三代厭氧工藝EGSB和IC厭氧反應器,發展十分迅速。
而升流式厭氧污泥床UASB( Up-flow Anaerobic Sludge Bed,註:以下簡稱UASB)工藝由於具有厭氧過濾及厭氧活性污泥法的雙重特點,作為能夠將污水中的污染物轉化成再生清潔能源——沼氣的一項技術。對於不同含固量污水的適應性也強,且其結構、運行操作維護管理相對簡單,造價也相對較低,技術已經成熟,正日益受到污水處理業界的重視,得到廣泛的歡迎和套用。
本文試圖就UASB的運行機理和工藝特徵以及UASB的設計啟動等方面作一簡要闡述。

UASB的由來

1971年荷蘭瓦格寧根(Wageningen)農業大學拉丁格(Lettinga)教授通過物理結構設計,利用重力場對不同密度物質作用的差異,發明了三相分離器。使活性污泥停留時間與廢水停留時間分離,形成了上流式厭氧污泥床(UASB)反應器的雛型。1974年荷蘭CSM公司在其6m3反應器處理甜菜製糖廢水時,發現了活性污泥自身固定化機制形成的生物聚體結構,即顆粒污泥(granular sludge)。顆粒污泥的出現,不僅促進了以UASB為代表的第二代厭氧反應器的套用和發展,而且還為第三代厭氧反應器的誕生奠定了基礎。

UASB工作原理

UASB由污泥反應區、氣液固三相分離器(包括沉澱區)和氣室三部分組成。在底部反應區記憶體留大量厭氧污泥,具有良好的沉澱性能和凝聚性能的污泥在下部形成污泥層。要處理的污水從厭氧污泥床底部流入與污泥層中污泥進行混合接觸,污泥中的微生物分解污水中的有機物,把它轉化為沼氣。沼氣以微小氣泡形式不斷放出,微小氣泡在上升過程中,不斷合併,逐漸形成較大的氣泡,在污泥床上部由於沼氣的攪動形成一個污泥濃度較稀薄的污泥和水一起上升進入三相分離器,沼氣碰到分離器下部的反射板時,折向反射板的四周,然後穿過水層進入氣室,集中在氣室沼氣,用導管導出,固液混合液經過反射進入三相分離器的沉澱區,污水中的污泥發生絮凝,顆粒逐漸增大,並在重力作用下沉降。沉澱至斜壁上的污泥沼著斜壁滑回厭氧反應區內,使反應區內積累大量的污泥,與污泥分離後的處理出水從沉澱區溢流堰上部溢出,然後排出污泥床。
基本出要求有:
(1)為污泥絮凝提供有利的物理、化學和力學條件,使厭氧污泥獲得並保持良好的沉澱性能;
(2)良好的污泥床常可形成一種相當穩定的生物相,保持特定的微生態環境,能抵抗較強的擾動力,較大的絮體具有良好的沉澱性能,從而提高設備內的污泥濃度;
(3)通過在污泥床設備內設定一個沉澱區,使污泥細顆粒在沉澱區的污泥層內進一步絮凝和沉澱,然後回流入污泥床內。

UASB內的流態和污泥分布

UASB內的流態相當複雜,反應區內的流態與產氣量和反應區高度相關,一般來說,反應區下部污泥層內,由於產氣的結果,部分斷面通過的氣量較多,形成一股上升的氣流,帶動部分混合液(指污泥與水)作向上運動。與此同時,這股氣、水流周圍的介質則向下運動,造成逆向混合,這種流態造成水的短流。在遠離這股上升氣、水流的地方容易形成死角。在這些死角處也具有一定的產氣量,形成污泥和水的緩慢而微弱的混合,所以說在污泥層內形成不同程度的混合區,這些混合區的大小與短流程度有關。懸浮層內混合液,由於氣體幣的運動帶動液體以較高速度上升和下降,形成較強的混合。在產氣量較少的情況下,有時污泥層與懸浮層有明顯的界線,而在產氣量較多的情況下,這個界面不明顯。有關試驗表明,在沉澱區內水流呈推流式,但沉澱區仍然還有死區和混合區。
UASB內污泥濃度與設備的有機負荷率有關。是處理製糖廢水試驗時,UASB內污泥分布與負荷的關係。從圖中可看出污泥層污泥濃度比懸浮層污泥濃度高,懸浮層的上下部分污泥濃度差較小,說明接近完全混合型流態,反應區內污泥的頒,當有機負荷很高時污泥層和懸浮層分界不明顯。試驗表明,污水通過底部0.4-0.6m的高度,已有90%的有機物被轉化。由此可見厭氧污泥具有極高的活性,改變了長期以來認為厭氧處理過程進行緩慢的概念。在厭氧污泥中,積累有大量高活性的厭氧污泥是這種設備具有巨大處理能力的主要原因,而這又歸於污泥具有良好的沉澱性能。
UASB具有高的容積有機負荷率,其主要原因是設備內,特別是污泥層內保有大量的厭氧污泥。工藝的穩定性和高效性很大程度上取決於生成具有優良沉降性能和很高甲烷活性的污泥,尤其是顆粒狀污泥。與此相反,如果反應區內的污泥以鬆散的絮凝狀體存在,往往出現污泥上浮流失,使UASB不能在較高的負荷下穩定運行。
根據UASB內污泥形成的形態和達到的COD容積負荷,可以將污泥顆粒化過程大致分為三個運行期:
(1)接種啟動期:從接種污泥開始到污泥床內的COD容積負荷達到5kgCOD/m3.d左右,此運行期污泥沉降性能一般;
(2)顆粒污泥形成期:這一運行期的特點是有小顆粒污泥開始出現,當污泥床內的總SS量和總VSS量降至最低時本運行期即告結束,這一運行期污泥沉降性能不太好;
(3)顆粒污泥成熟期:這一運行期的特點是顆粒污泥大量形成,由下至上逐步充滿整個UASB。當污泥床容積負荷達到16kgCOD/m3.d以上時,可以認為顆粒污泥已培養成熟。該運行期污泥沉降性很好。

外設沉澱池防止污泥流失

在UASB內雖有氣液固三相分離器,混合液進入沉澱區前已把氣體分離,但由於沉澱區內的污泥仍具有較高的產甲烷活性,繼續在沉澱區內產氣;或者由於衝擊負荷及水質突然變化,可能使反應區內污泥膨脹,結果沉澱區固液分離不佳,發生污泥流失而影響了水質和污泥床中污泥濃度。為了減少出水所帶的懸浮物進入水體,外部另設一沉澱池,沉澱下來的污泥回流到污泥床內。
設定外部沉澱池的好處是:
(1)污泥回流可加速污泥的積累,縮短啟動周期
(2)去除懸浮物,改善出水水質;
(3)當偶爾發生大量漂泥時,提高了可見性,能夠及時回收污泥保持工藝的穩定性;
(4)回流污泥可作進一步分解,可減少剩餘污泥量。

UASB的設計

UASB的工藝設計主要是計算UASB的容積、產氣量、剩餘污泥量、營養需求的平衡量。
UASB的池形狀有圓形、方形、矩形。污泥床高度一般為3-8m,多用鋼筋混凝土建造。當污水有機物濃度比較高時,需要的沉澱區與反應區的容積比值小,反應區的面積可採用與沉澱區相同的面積和池形。當污水有機物濃度低時,需要的沉澱面積大,為了保證反應區的一定高度,反應區的面積不能太大時,則可採用反應區的面積小於沉澱區,即污泥床上部面積大於下部的池形。
氣液固三相分離器是UASB的重要組成部分,它對污泥床的正常運行和獲良好的出水水質起十分重要的作用,因此設計時應給予特別的重視。根據經驗,三相分離器應滿足以下幾點要求:
1、混和液進入沉澱區之關,必須將其中的氣泡予以脫出,防止氣泡進入沉澱區影響沉澱;
2、沉澱器斜壁角度約可大於45度角;
3、沉澱區的表面水力負荷應在0.7m3/m2.h以下,進入沉澱區前,通過沉澱槽低縫的流速不大於2m/m2.h;
4、處於集氣器的液一氣界面上的污泥要很好地使之浸沒於水中;
5、應防止集氣器內產生大量泡沫。
第2、3兩個條件可以通過適當選擇沉澱器的深度-面積比來加以滿足。
對於低濃度污水,主要用限制表面水力負荷來控制;對於中等濃度和高濃度污水,在極高負荷下,單位橫截面上釋放的氣體體積可能成為一個臨界指標。但是直到現在國內外所取得的成果表明,只要負荷率不超過20kgCOD/m3.d,UASB高度尚未見到有大於10m的報導,第三代厭氧反應器除外。
污泥與液體的分離基於污泥絮凝、沉澱和過濾作用。所以在運行操作過程中,應該儘可能創造污泥能夠形成絮凝沉降的水力條件,使污泥具有良好的絮凝、沉澱性能,不僅對於分離器的工作是具有重要意義,對於整個有機物去除率更加至關重要。
特別要注意避免氣泡進入沉澱區,要使固——液進入沉澱區之前就與氣泡很好分離。在氣——液表面上形成浮渣能迫使一些氣泡進入沉澱區,所以在設計中必須事先就考慮到:
(1)採用適當的技術措施,儘可能避免浮渣的形成條件,防範浮渣層的形成;
(2)必須要有衝散浮渣的設施或裝置,在污泥反應區一旦出現浮渣的情況下,能夠及時破壞浮渣層的形成,或能夠及時排除浮渣。
如上所述,UASB中污水與污泥的混合是靠上升的水流和發酵過程中產生的氣泡來完成的。因此,一般採用多點進水,使進水均勻地分布在床斷面上,其中的關鍵是要均勻——勻速、勻量。
UASB容積的計算一般按有機物容積負荷或水力停留時間進行。設計時可通過試驗決定參數或參考同類廢水的設計和運行參數。

UASB的啟動

1、污泥的馴化
UASB設備啟動的難點是獲得大量沉降性能良好的厭氧顆粒污泥。最好的辦法加以馴化,一般需要3-6個月,如果靠設備自身積累,投產期最長可長達1-2年。實踐表明,投加少量的載體,有利於厭氧菌的附著,促進初期顆粒污泥的形成;比重大的絮狀污泥比輕的易於顆粒化;比甲烷活性高的厭氧污泥可縮短啟動期。
2、啟動操作要點
(1)最好一次投加足夠量的接種污泥;
(2)啟動初期從污泥床流出的污泥可以不予回流,以使特別輕的和細碎污泥跟懸浮物連續地從污泥床排出體外,使較重的活性污泥在床內積累,並促進其增殖逐步達到顆粒化;
(3)啟動開始廢水COD濃度較低時,未必就能讓污泥顆粒化速度加快;
(4)最初污泥負荷率一般在0.1-0.2kgCOD/kgTSS.d左右比較合適;
(5)污水中原來存在的和厭氧分解出來的多種揮發酸未能有效分解之前,不應隨意提高有機容積負荷,這需要跟蹤觀察和水樣化驗;
(6)可降解的COD去除率達到70—80%左右時,可以逐步增加有機容積負荷率;
(7)為促進污泥顆粒化,反應區內的最小空塔速度不可低於1m/d,採用較高的表面水力負荷有利於小顆粒污泥與污泥絮凝分開,使小顆粒污泥凝並為大顆粒。

UASB工藝的優缺點

UASB的主要優點是:
1、UASB內污泥濃度高,平均污泥濃度為20-40gVSS/1;
2、有機負荷高,水力停留時間短,採用中溫發酵時,容積負荷一般為10kgCOD/m3.d左右;
3、無混合攪拌設備,靠發酵過程中產生的沼氣的上升運動,使污泥床上部的污泥處於懸浮狀態,對下部的污泥層也有一定程度的攪動;
4、污泥床不填載體,節省造價及避免因填料發生堵賽問題;
5、UASB內設三相分離器,通常不設沉澱池,被沉澱區分離出來的污泥重新回到污泥床反應區內,通常可以不設污泥回流設備。
主要缺點是:
1、進水中懸浮物需要適當控制,不宜過高,一般控制在100mg/l以下;
2、污泥床內有短流現象,影響處理能力;
3、對水質和負荷突然變化較敏感,耐衝擊力稍差。

結語

UASB工藝近年來在國內外發展很快,套用面很寬,在各個行業都有套用,生產性規模不等。實踐證明,它是污水實現資源化的一種技術成熟可行的污水處理工藝,既解決了環境污染問題,又能取得較好的經濟效益,具有廣闊的套用前景。

相關詞條

相關搜尋

熱門詞條

聯絡我們