PN結

PN結

pn結是指採用不同的摻雜工藝,通過擴散作用,將P型半導體與N型半導體製作在同一塊半導體(通常是矽或鍺)基片上,在它們的交界面就形成空間電荷區稱為PN結(英語:PN junction)。PN結具有單嚮導電性,是電子技術中許多器件所利用的特性,例如半導體二極體、雙極性電晶體的物質基礎。

基本信息

簡介

在一塊單晶半導體中,一部分摻有受主雜質是 P型半導體,另一部分摻有施主雜質是N型半導體時,P型半導體和 N型半導體的交界面附近的過渡區稱為PN結。PN結有同質結和異質結兩種。用同一種半導體材料製成的PN結叫同質結,由禁頻寬度不同的兩種半導體材料(如GaAl/GaAs、InGaAsP/InP等)製成的PN結叫異質結。製造PN結的方法有合金法、擴散法、離子注入法和外延生長法等。製造異質結通常採用外延生長法。

原理

雜質半導體

N型半導體(N為Negative的字頭,由於電子帶負電荷而得此名):摻入少量雜質磷元素(或銻元素)的矽晶體(或鍺晶體)中,由於半導體原子(如矽原子)被雜質原子取代,磷原子外層的五個外層電子的其中四個與周圍的半導體原子形成共價鍵,多出的一個電子幾乎不受束縛,較為容易地成為自由電子。於是,N型半導體就成為了含電子濃度較高的半導體,其導電性主要是因為自由電子導電。
P型半導體(P為Positive的字頭,由於空穴帶正電而得此名):摻入少量雜質硼元素(或銦元素)的矽晶體(或鍺晶體)中,由於半導體原子(如矽原子)被雜質原子取代,硼原子外層的三個外層電子與周圍的半導體原子形成共價鍵的時候,會產生一個“空穴”,這個空穴可能吸引束縛電子來“填充”,使得硼原子成為帶負電的離子。這樣,這類半導體由於含有較高濃度的“空穴”(“相當於”正電荷),成為能夠導電的物質。

PN結的形成

PN結是由一個N型摻雜區和一個P型摻雜區緊密接觸所構成的,其接觸界面稱為冶金結界面。
在一塊完整的矽片上,用不同的摻雜工藝使其一邊形成N型半導體,另一邊形成P型半導體,我們稱兩種半導體的交界面附近的區域為PN結。在P型半導體和N型半導體結合後,由於N型區內自由電子為多子空穴幾乎為零稱為少子,而P型區內空穴為多子自由電子為少子,在它們的交界處就出現了電子和空穴的濃度差。由於自由電子和空穴濃度差的原因,有一些電子從N型區向P型區擴散,也有一些空穴要從P型區向N型區擴散。它們擴散的結果就使P區一邊失去空穴,留下了帶負電的雜質離子,N區一邊失去電子,留下了帶正電的雜質離子。開路中半導體中的離子不能任意移動,因此不參與導電。這些不能移動的帶電粒子在P和N區交界面附近,形成了一個空間電荷區,空間電荷區的薄厚和摻雜物濃度有關。
在空間電荷區形成後,由於正負電荷之間的相互作用,在空間電荷區形成了內電場,其方向是從帶正電的N區指向帶負電的P區。顯然,這個電場的方向與載流子擴散運動的方向相反,阻止擴散。
另一方面,這個電場將使N區的少數載流子空穴向P區漂移,使P區的少數載流子電子向N區漂移,漂移運動的方向正好與擴散運動的方向相反。從N區漂移到P區的空穴補充了原來交界面上P區所失去的空穴,從P區漂移到N區的電子補充了原來交界面上N區所失去的電子,這就使空間電荷減少,內電場減弱。因此,漂移運動的結果是使空間電荷區變窄,擴散運動加強。
最後,多子的擴散和少子的漂移達到動態平衡。在P型半導體和N型半導體的結合面兩側,留下離子薄層,這個離子薄層形成的空間電荷區稱為PN結。PN結的內電場方向由N區指向P區。在空間電荷區,由於缺少多子,所以也稱耗盡層。

特性

基本特性 

PN結PN結
在P型半導體中有許多帶正電荷的空穴和帶負電荷的電離雜質。在電場的作用下,空穴是可以移動的,而電離雜質(離子)是固定不動的。N型半導體中有許多可動的負電子和固定的正離子。當P型和N型半導體接觸時,在界面附近空穴從P型半導體向N型半導體擴散,電子從N型半導體向P型半導體擴散。空穴和電子相遇而複合,載流子消失。因此在界面附近的結區中有一段距離缺少載流子,卻有分布在空間的帶電的固定離子,稱為空間電荷區(圖1)。P型半導體一邊的空間電荷是負離子,N型半導體一邊的空間電荷是正離子。正負離子在界面附近產生電場,這電場阻止載流子進一步擴散,達到平衡。
PN結PN結
在PN結上外加一電壓,如果P型一邊接正極,N型一邊接負極,電流便從P型一邊流向N型一邊,空穴和電子都向界面運動,使空間電荷區變窄,甚至消失,電流可以順利通過。如果N型一邊接外加電壓的正極,P型一邊接負極,則空穴和電子都向遠離界面的方向運動,使空間電荷區變寬,電流不能流過。這就是PN結的單嚮導電性。
PN結加反向電壓時,空間電荷區變寬,區中電場增強。反向電壓增大到一定程度時,反向電流將突然增大(圖2)。如果外電路不能限制電流,則電流會大到將PN結燒毀。反向電流突然增大時的電壓稱擊穿電壓。基本的擊穿機構有兩種,即隧道擊穿和雪崩擊穿,圖2的AB段表明電流變化很大,而PN結上的電壓變化很小。利用這種特性可以製作穩壓元件。
PN結加反向電壓時,空間電荷區中的正負電荷構成一個電容性的器件。它的電容量隨外加電壓改變。

反向擊穿性

PN結加反向電壓時,空間電荷區變寬,區中電場增強。反向電壓增大到一定程度時,反向電流將突然增大。如果外電路不能限制電流,則電流會大到將PN結燒毀。反向電流突然增大時的電壓稱擊穿電壓。基本的擊穿機構有兩種,即隧道擊穿(也叫齊納擊穿)和雪崩擊穿,前者擊穿電壓小於6V,有負的溫度係數,後者擊穿電壓大於6V,有正的溫度係數。
雪崩擊穿:阻擋層中的載流子漂移速度隨內部電場的增強而相應加快到一定程度時,其動能足以把束縛在共價鍵中的價電子碰撞出來,產生自由電子—空穴對,新產生的載流子在強電場作用下,再去碰撞其它中性原子,又產生新的自由電子—空穴對,如此連鎖反應,使阻擋層中的載流子數量急劇增加,象雪崩一樣。雪崩擊穿發生在摻雜濃度較低的PN結中,阻擋層寬,碰撞電離的機會較多,雪崩擊穿的擊穿電壓高。
齊納擊穿:齊納擊穿通常發生在摻雜濃度很高的PN結內。由於摻雜濃度很高,PN結很窄,這樣即使施加較小的反向電壓(5V以下),結層中的電場卻很強(可達2.5×105V/m左右)。在強電場作用下,會強行促使PN結內原子的價電子從共價鍵中拉出來,形成"電子一空穴對",從而產生大量的載流子。它們在反向電壓的作用下,形成很大的反向電流,出現了擊穿。顯然,齊納擊穿的物理本質是場致電離。採取適當的摻雜工藝,將矽PN結的雪崩擊穿電壓可控制在8~1000V。而齊納擊穿電壓低於5V。在5~8V之間兩種擊穿可能同時發生。
熱電擊穿:當pn結施加反向電壓時,流過pn結的反向電流要引起熱損耗。反向電壓逐漸增大時,對於一定的反向電流所損耗的功率也增大,這將產生大量熱量。如果沒有良好的散熱條件使這些熱能及時傳遞出去,則將引起結溫上升。這種由於熱不穩定性引起的擊穿,稱為熱電擊穿。
擊穿電壓的溫度特性:溫度升高后,晶格振動加劇,致使載流子運動的平均自由路程縮短,碰撞前動能減小,必須加大反向電壓才能發生雪崩擊穿具有正的溫度係數,但溫度升高,共價鍵中的價電子能量狀態高,從而齊納擊穿電壓隨溫度升高而降低,具有負的溫度係數。

套用 

根據PN結的材料、摻雜分布、 幾何結構和偏置條件的不同,利用其基本特性可以製造多種功能的晶體二極體。如利用PN結單嚮導電性可以製作整流二極體、檢波二極體和開關二極體;利用擊穿特性製作穩壓二極體雪崩二極體;利用高摻雜PN結隧道效應製作隧道二極體;利用結電容隨外電壓變化效應製作變容二極體。使半導體的光電效應與PN結相結合還可以製作多種光電器件。如利用前向偏置異質結的載流子注入與複合可以製造半導體雷射二極體半導體發光二極體;利用光輻射對PN結反向電流的調製作用可以製成光電探測器;利用光生伏特效應可製成太陽電池。此外,利用兩個PN結之間的相互作用可以產生放大、振盪等多種電子功能。PN結是構成雙極型電晶體場效應電晶體的核心,是現代電子技術的基礎。

穩壓二極體

PN結一旦擊穿後,儘管反向電流急劇變化,但其端電壓幾乎不變(近似為VBR,只要限制它的反向電流,PN結就不會燒壞,利用這一特性可製成穩壓二極體,其電路符號及伏安特性如上圖所示:其主要參數有:VZ、Izmin、Iz、Izmax。

變容二極體

PN結反偏時,反向電流很小,近似開路,因此是一個主要由勢壘電容構成的較理想的電容器件,且其增量電容值隨外加電壓而變化利用該特性可製作變容二極體,變容二極體在非線性電路中套用較廣泛,如壓控振盪器、頻率調製等。

製造工藝

PN結是構成各種半導體器件的基礎。製造PN結的方法有:
製造異質結通常採用外延生長法。
(1)外延方法:突變PN結
(2)擴散方法:緩變PN結
(3)離子注入方法:介於突變結與緩變結之間;

相關搜尋

熱門詞條

聯絡我們