GPS天津

GPS天津

GPS實現衛星定位後,以GPRS或GSM(SMS)將監控目標的經緯度、速度、方位、海拔高度數據發回監控中心;

GPS構成
1。空間部分
GPS的空間部分是由24 顆工作衛星組成,它位於距地表20 200km的上空,均勻分布在6 個軌道面上(每個軌道面4 顆) ,軌道傾角為55°。此外,還有4 顆有源備份衛星在軌運行。衛星的分布使得在全球任何地方、任何時間都可觀測到4 顆以上的衛星,並能保持良好定位解算精度的幾何圖象。這就提供了在時間上連續的全球導航能力。GPS 衛星產生兩組電碼, 一組稱為C/ A 碼( Coarse/ Acquisition Code11023MHz) ;一組稱為P 碼(Procise Code 10123MHz) ,P 碼因頻率較高,不易受干擾,定位精度高,因此受美國軍方管制,並設有密碼,一般民間無法解讀,主要為美國軍方服務。C/ A 碼人為採取措施而刻意降低精度後,主要開放給民間使用。
2。地面控制部分
地面控制部分由一個主控站,5 個全球監測站和3 個地面控制站組成。監測站均配裝有精密的銫鐘和能夠連續測量到所有可見衛星的接受機。監測站將取得的衛星觀測數據,包括電離層和氣象數據,經過初步處理後,傳送到主控站。主控站從各監測站收集跟蹤數據,計算出衛星的軌道和時鐘參數,然後將結果送到3 個地面控制站。地面控制站在每顆衛星運行至上空時,把這些導航數據及主控站指令注入到衛星。這種注入對每顆GPS 衛星每天一次,並在衛星離開注入站作用範圍之前進行最後的注入。如果某地面站發生故障,那么在衛星中預存的導航信息還可用一段時間,但導航精度會逐漸降低。
3。用戶設備部分
用戶設備部分即GPS 信號接收機。其主要功能是能夠捕獲到按一定衛星截止角所選擇的待測衛星,並跟蹤這些衛星的運行。當接收機捕獲到跟蹤的衛星信號後,即可測量出接收天線至衛星的偽距離和距離的變化率,解調出衛星軌道參數等數據。根據這些數據,接收機中的微處理計算機就可按定位解算方法進行定位計算,計算出用戶所在地理位置的經緯度、高度、速度、時間等信息。接收機硬體和機內軟體以及GPS 數據的後處理軟體包構成完整的GPS 用戶設備。GPS 接收機的結構分為天線單元和接收單元兩部分。接收機一般採用機內和機外兩種直流電源。設定機內電源的目的在於更換外電源時不中斷連續觀測。在用機外電源時機內電池自動充電。關機後,機內電池為RAM存儲器供電,以防止數據丟失。目前各種類型的接受機體積越來越小,重量越來越輕,便於野外觀測使用。
GPS原理
GPS導航系統的基本原理是測量出已知位置的衛星到用戶接收機之間的距離,然后綜合多顆衛星的數據就可知道接收機的具體位置。要達到這一目的,衛星的位置可以根據星載時鐘所記錄的時間在衛星星曆中查出。而用戶到衛星的距離則通過紀錄衛星信號傳播到用戶所經歷的時間,再將其乘以光速得到(由於大氣層電離層的干擾,這一距離並不是用戶與衛星之間的真實距離,而是偽距(PR):當GPS衛星正常工作時,會不斷地用1和0二進制碼元組成的偽隨機碼(簡稱偽碼)發射導航電文。GPS系統使用的偽碼一共有兩種,分別是民用的C/A碼和軍用的P(Y)碼。C/A碼頻率1.023MHz,重複周期一毫秒,碼間距1微秒,相當於300m;P碼頻率10.23MHz,重複周期266.4天,碼間距0.1微秒,相當於30m。而Y碼是在P碼的基礎上形成的,保密性能更佳。導航電文包括衛星星曆、工作狀況、時鐘改正、電離層時延修正、大氣折射修正等信息。它是從衛星信號中解調製出來,以50b/s調製在載頻上發射的。導航電文每個主幀中包含5個子幀每幀長6s。前三幀各10個字碼;每三十秒重複一次,每小時更新一次。後兩幀共15000b。導航電文中的內容主要有遙測碼、轉換碼、第1、2、3數據塊,其中最重要的則為星曆數據。當用戶接受到導航電文時,提取出衛星時間並將其與自己的時鐘做對比便可得知衛星與用戶的距離,再利用導航電文中的衛星星曆數據推算出衛星發射電文時所處位置,用戶在WGS-84大地坐標系中的位置速度等信息便可得知。
可見GPS導航系統衛星部分的作用就是不斷地發射導航電文。然而,由於用戶接受機使用的時鐘與衛星星載時鐘不可能總是同步,所以除了用戶的三維坐標x、y、z外,還要引進一個Δt即衛星與接收機之間的時間差作為未知數,然後用4個方程將這4個未知數解出來。所以如果想知道接收機所處的位置,至少要能接收到4個衛星的信號。
GPS接收機可接收到可用於授時的準確至納秒級的時間信息;用於預報未來幾個月內衛星所處概略位置的預報星曆;用於計算定位時所需衛星坐標的廣播星曆,精度為幾米至幾十米(各個衛星不同,隨時變化);以及GPS系統信息,如衛星狀況等。
GPS接收機對碼的量測就可得到衛星到接收機的距離,由於含有接收機衛星鐘的誤差及大氣傳播誤差,故稱為偽距。對0A碼測得的偽距稱為UA碼偽距,精度約為20米左右,對P碼測得的偽距稱為P碼偽距,精度約為2米左右。
GPS接收機對收到的衛星信號,進行解碼或採用其它技術,將調製在載波上的信息去掉後,就可以恢復載波。嚴格而言,載波相位應被稱為載波拍頻相位,它是收到的受都卜勒頻 移影響的衛星信號載波相位與接收機本機振蕩產生信號相位之差。一般在接收機鍾確定的曆元時刻量測,保持對衛星信號的跟蹤,就可記錄下相位的變化值,但開始觀測時的接收機和衛星振盪器的相位初值是不知道的,起始曆元的相位整數也是不知道的,即整周模糊度,只能在數據處理中作為參數解算。相位觀測值的精度高至毫米,但前提是解出整周模糊度,因此只有在相對定位、並有一段連續觀測值時才能使用相位觀測值,而要達到優於米級的定位 精度也只能採用相位觀測值。
按定位方式,GPS定位分為單點定位和相對定位(差分定位)。單點定位就是根據一台接收機的觀測數據來確定接收機位置的方式,它只能採用偽距觀測量,可用於車船等的概略導航定位。相對定位(差分定位)是根據兩台以上接收機的觀測數據來確定觀測點之間的相對位置的方法,它既可採用偽距觀測量也可採用相位觀測量,大地測量或工程測量均應採用相位觀測值進行相對定位。
在GPS觀測量中包含了衛星和接收機的鐘差、大氣傳播延遲、多路徑效應等誤差,在定位計算時還要受到衛星廣播星曆誤差的影響,在進行相對定位時大部分公共誤差被抵消或削弱,因此定位精度將大大提高,雙頻接收機可以根據兩個頻率的觀測量抵消大氣中電離層誤差的主要部分,在精度要求高,接收機間距離較遠時(大氣有明顯差別),應選用雙頻接收機。
相對論為GPS提供了所需的修正
全球定位系統GPS衛星的定時信號提供緯度、經度和高度的信息,精確的距離測量需要精確的時鐘。因此精確的GPS接受器就要用到相對論效應。
準確度在30米之內的GPS接受器就意味著它已經利用了相對論效應。華盛頓大學的物理學家Clifford M. Will詳細解釋說:“如果不考慮相對論效應,衛星上的時鐘就和地球的時鐘不同步。”相對論認為快速移動物體隨時間的流逝比靜止的要慢。Will計算出,每個GPS衛星每小時跨過大約1.4萬千米的路程,這意味著它的星載原子鐘每天要比地球上的鐘慢7微秒。
而引力對時間施加了更大的相對論效應。大約2萬千米的高空,GPS衛星經受到的引力拉力大約相當於地面上的四分之一。結果就是星載時鐘每天快45微秒, GPS要計入共38微秒的偏差。Ashby解釋說:“如果衛星上沒有頻率補償,每天將會增大11千米的誤差。”(這種效應實事上更為複雜,因為衛星沿著一個偏心軌道,有時離地球較近,有時又離得較遠。)
GPS前景
由於GPS技術所具有的全天候、高精度和自動測量的特點,作為先進的測量手段和新的生產力,已經融入了國民經濟建設、國防建設和社會發展的各個套用領域。
隨著冷戰結束和全球經濟的蓬勃發展,美國政府宣布2000年至2006年期間,在保證美國國家安全不受威脅的前提下,取消SA政策,GPS民用信號精度在全球範圍內得到改善,利用C/A碼進行單點定位的精度由100米提高到20米,這將進一步推動GPS技術的套用,提高生產力、作業效率、科學水平以及人們的生活質量,刺激GPS市場的增長。據有關專家預測,在美國,單單是汽車GPS導航系統,2000年後的市場將達到30億美元,而在我國,汽車導航的市場也將達到50億元人民幣。可見,GPS技術市場的套用前景非常可觀。
GPS特點
全球定位系統的主要特點:(1)全天候;(2) 全球覆蓋;(3)三維定速定時高精度;(4)快速省時高效率:(5)套用廣泛多功能。
GPS功用
全球定位系統的主要用途:(1)陸地套用,主要包括車輛導航、應急反應、大氣物理觀測、地球物理資源勘探、工程測量、變形監測、地殼運動監測、 市政規劃控制等;(2)海洋套用,包括遠洋船最佳航程航線測定、船隻實時調度與導航、海洋救援、海洋探寶、水文地質測量以及海洋平台定位、海平面升降監測等;(3)航空航天套用,包括飛機導航、航空遙 感姿態控制、低軌衛星定軌、飛彈制導、航空救援和載人太空飛行器防護探測等。
GPS套用
主要是為船舶,汽車,飛機等運動物體進行定位導航。例如:
1.船舶遠洋導航和進港引水
2.飛機航路引導和進場降落
3.汽車自主導航
4.地面車輛跟蹤和城市智慧型交通管理
5.緊急救生
6.個人旅遊及野外探險
7.個人通訊終端(與手機,PDA,電子地圖等集成一體)
1.電力,郵電,通訊等網路的時間同步
2.準確時間的授入
3.準確頻率的授入
1.各種等級的大地測量,控制測量
2.道路和各種線路放樣
3.水下地形測量
4.地殼形變測量,大壩和大型建築物變形監測
5.GIS套用
6.工程機械(輪胎吊,推土機等)控制
7.精細農業
◆GPS在道路工程中的套用
GPS在道路工程中的套用,目前主要是用於建立各種道路工程控制網及測定航測外控點等。隨著高等級公路的迅速發展,對勘測技術提出了更高的要求,由於線路長,已知點少,因此,用常規測量手段不僅布網困難,而且難以滿足高精度的要求。目前,國內已逐步採用GPS技術建立線路首級高精度控制網,然後用常規方法布設導線加密。實踐證明,在幾十公里範圍內的點位誤差只有2厘米左右,達到了常規方法難以實現的精度,同時也大大提前了工期。GPS技術也同樣套用於特大橋樑的控制測量中。由於無需通視,可構成較強的網形,提高點位精度,同時對檢測常規測量的支點也非常有效。GPS技術在隧道測量中也具有廣泛的套用前景,GPS測量無需通視,減少了常規方法的中間環節,因此,速度快、精度高,具有明顯的經濟和社會效益。
◆GPS在汽車導航和交通管理中的套用
三維導航是GPS的首要功能,飛機、輪船、地面車輛以及步行者都可以利用GPS導航器進行導航。汽車導航系統是在全球定位系統GPS基礎上發展起來的一門新型技術。汽車導航系統由GPS導航、自律導航、微處理機、車速感測器、陀螺感測器、CD-ROM驅動器、LCD顯示器組成。GPS導航系統與電子地圖、無線電通信網路、計算機車輛管理信息系統相結合,可以實現車輛跟蹤和交通管理等許多功能。
(1)車輛跟蹤
利用GPS和電子地圖可以實時顯示出車輛的實際位置,並可任意放大、縮小、還原、換圖;可以隨目標移動,使目標始終保持在螢幕上;還可實現多視窗、多車輛、多螢幕同時跟蹤。利用該功能可對重要車輛和貨物進行跟蹤運輸。
(2)提供出行路線規劃和導航
提供出行路線規劃是汽車導航系統的一項重要的輔助功能,它包括自動線路規劃和人工線路設計。自動線路規劃是由駕駛者確定起點和目的地,由計算機軟體按要求自動設計最佳行駛路線,包括最快的路線、最簡單的路線、通過高速公路路段次數最少的路線的計算。人工線路設計是由駕駛員根據自己的目的地設計起點、終點和途經點等,自動建立路線庫。線路規劃完畢後,顯示器能夠在電子地圖上顯示設計路線,並同時顯示汽車運行路徑和運行方法。 
(3)信息查詢
為用戶提供主要物標、如旅遊景點、賓館、醫院等資料庫,用戶能夠在電子地圖上顯示其位置。同時,監測中心可以利用監測控制台對區域內的任意目標所在位置進行查詢,車輛信息將以數字形式在控制中心的電子地圖上顯示出來。
(4)話務指揮
指揮中心可以監測區域內車輛運行狀況,對被監控車輛進行合理調度。指揮中心也可隨時與被跟蹤目標通話,實行管理。
(5)緊急援助
通過GPS定位和監控管理系統可以對遇有險情或發生事故的車輛進行緊急援助。監控台的電子地圖顯示求助信息和報警目標,規劃最優援助方案,並以報警聲光提醒值班人員進行應急處理。
◆GPS的其它套用
GPS除了用於導航、定位、測量外,由於GPS系統的空間衛星上載有的精確時鐘可以發布時間和頻率信息,因此,以空間衛星上的精確時鐘為基礎,在地面監測站的監控下,傳送精確時間和頻率是GPS的另一重要套用,套用該功能可進行精確時間或頻率的控制,可為許多工程實驗服務。此外,還可利用GPS獲得氣象數據,為某些實驗和工程套用。
全球衛星定位系統GPS是今年以來開發的最具有開創意義的高新技術之一,其全球性、全能性、全天侯性的導航定位、定時、測速優勢必然會在諸多領域中得到越來越廣泛的套用。在已開發國家,GPS技術已經開始套用於交通運輸和交通工程。目前,GPS技術在中國道路工程和交通管理中的套用還剛剛起步,隨著中國經濟的發展,高等級公路的快速修建和GPS技術的套用研究的逐步深入,其在道路工程中的套用也會更加廣泛和深入,並發揮更大的作用。
數據接口格式:這得細談談。GPS可以輸出實時定位數據讓其他的設備使用,這就牽扯到了數據交換協定。幾乎現在所有的GPS接收機都遵循美國國家海洋電子協會(National Marine Electronics Association)所指定的標準規格,這一標準制訂所有航海電子儀器間的通訊標準,其中包含傳輸資料的格式以及傳輸資料的通訊協定。NMEA協定有0180、0182和0183三種,0183可以認為是前兩種的超集,現在正廣泛的使用,0183有幾個版本,V1.5 V2.1。所以,如果大家的GPS接收機如果要聯上筆記本里通用的GPS導航程式,比如OZIEXPLORER和俺的GPSRECEIVER,就應該選擇NEMA V2.0以上的協定。NMEA規定的通訊速度是4800 b/S。現在有些接收機也可以提供更高的速度,但說實話,沒有什麼用,4800就足夠了。
GPS種類
GPS衛星接收機種類很多,根據型號分為測地型、全站型、定時型、手持型、集成型;根據用途分為車載式、船載式、機載式、星載式、彈載式。
按接收機的用途分類
1. 導航型接收機
此類型接收機主要用於運動載體的導航,它可以實時給出載體的位置和速度。這類接收機 一般採用C/A碼偽距測量,單點實時定位精度較低,一般為±10m,有SA影響時為±100m。 這類接收機價格便宜,套用廣泛。根據套用領域的不同,此類接收機還可以進一步分為:
車載型——用於車輛導航定位;
航海型——用於船舶導航定位;
航空型——用於飛機導航定位。由於飛機運行速度快,因此,在航空上用的接收機 要求能適應高速運動。
星載型——用於衛星的導航定位。由於衛星的速度高達7km/s以上,因此對接收機的要求更高。
2. 測地型接收機
測地型接收機主要用於精密大地測量和精密工程測量。這類儀器主要採用載波相位觀測值 進行相對定位,定位精度高。儀器結構複雜,價格較貴。
3. 授時型接收機
這類接收機主要利用GPS衛星提供的高精度時間標準進行授時,常用於天文台及無線電通訊中時間同步。
4.2.2 按接收機的載波頻率分類
單頻接收機
單頻接收機只能接收L1載波信號,測定載波相位觀測值進行定位。由於不能有效消除 電離層延遲影響,單頻接收機只適用於短基線(<15km)的精密定位。
雙頻接收機
雙頻接收機可以同時接收L1,L2載波信號。利用雙頻對電離層延遲的不一樣,可以消除電離層 對電磁波信號的延遲的影響,因此雙頻接收機可用於長達幾千公里的精密定位。
4.2.3 按接收機通道數分類
GPS接收機能同時接收多顆GPS衛星的信號,為了分離接收到的不同衛星的信號,以實現對衛星信號 的跟蹤、處理和量測,具有這樣功能的器件稱為天線信號通道。根據接收機所具有 的通道種類可分為:
多通道接收機
序貫通道接收機
多路多用通道接收機
4.2.4 按接收機工作原理分類
碼相關型接收機
碼相關型接收機是利用碼相關技術得到偽距觀測值。
平方型接收機
平方型接收機是利用載波信號的平方技術去掉調製信號,來恢復完整的載波信號 通過相位計測定接收機內產生的載波信號與接收到的載波信號之間的相位差,測定偽距觀測值。
混合型接收機
這種儀器是綜合上述兩種接收機的優點,既可以得到碼相位偽距,也可以得到載波相位觀測值。
干涉型接收機
這種接收機是將GPS衛星作為射電源,採用干涉測量方法,測定兩個測站間距離。
經過20餘年的實踐證明,GPS系統是一個高精度、全天候和全球性的無線電導航、定位和定時的多功能系統。 GPS技術已經發展成為多領域、多模式、多用途、多機型的國際性高新技術產業。
◆測地型GPS
測地型接收機主要用於精密大地測量和精密工程測量。這類儀器主要採用載波相位觀測值 進行相對定位,定位精度高。儀器結構複雜,價格較貴。根據使用用途和精度,又分為靜態(單頻)接收機和動態(雙頻)接收機即RTK.
目前,在GPS技術開發和實際套用方面,國際上較為知名的生產廠商有美國Trimble(天寶)導航公司、瑞士Leica Geosystems(徠卡測量系統)、日本TOPCON(拓普康)公司、美國Magellan(麥哲倫)公司(原泰雷茲導航)、國內有中海達、上海華測導航、南方測繪等。
Trimble(天寶)的GPS接收機產品主要有SPS751、SPS851、SPS781、SPS881、R8、R8GNSS、R7、R6及5800、5700等。其作為美國軍方控股企業,是世界上最早研究與生產的GPS的部分企業之一,其中,SPS881,R8GNSS為72通道GPS/WAAS/EGNOS接收機,它把三頻GPS接收機、GPS天線、UHF無線電和電源組合在一個袖珍單元中,具有內置Trimble Maxwell 5晶片的超跟蹤技術。即使在惡劣的電磁環境中,仍然能用小於2.5瓦的功率提供對衛星有效的追蹤。同時,為擴大作業覆蓋範圍和全面減小誤差,可以同頻率多基準站的方式工作。此外,它還與Trimble VRS網路技術完全兼容,其內置的WAAS和EGNOS功能提供了無基準站的實時差分定位。SPS751、SPS851、SPS551還具有接收星站差分改正信息的功能,最高單機定位精度可達到5cm。
Leica Geosystems(徠卡測量系統)是全球著名的專業測量公司,其不僅在全站儀、相機方面對行業產生了很大的影響,而且在測量型GPS的研發及GPS的套用上也做出了極大的貢獻,是快速靜態、動態RTK技術的先驅。其GPS1200系統中的接收機包括4種型號:GX1230 GG/ATX1230 GG、GX1230/ATX1230、GX1220和GX1210。
其中,GX1230 GG/ATX1230 GG為72通道、雙頻RTK測量接收機,接收機集成電台、GSM、GPRS和CDMA模組,具有連續檢核(SmartCheck+)功能,可防水(水下1m)、防塵、防沙。動態精度:水平10mm+1ppm,垂直20mm+1ppm;靜態精度:水平5mm+0.5ppm,垂直10mm+0.5ppm。它在20Hz時的RTK距離能夠達到30km甚至更長,並且可保證厘米級的測量精度,基線在30公里時的可靠性是99.99%。
日本TOPCON(拓普康)公司生產的GPS接收機主要有GR-3、GB-1000、Hiper系列、Net-G3等。其中,GR-3大地測量型接收機可100%兼容三大衛星系統(GPS+GLONASS+GALIEO)的所有可用信號,他不僅僅是世界上最早研發出能同時接收美國的GPS與俄羅斯GLONASS兩種衛星信號的雙星技術的廠家,也是現今世界上唯一可以同時接收所有GNSS衛星的接收機技術,有72個超級跟蹤頻道,每個通道都可獨立追蹤三種衛星信號,採用抗2米摔落堅固設計,支持藍牙通訊,內置GSM/GPRS模組(可選)。靜態、快速靜態的精度:水平3mm+0.5ppm,垂直5mm+0.5ppm;RTK精度:水平10mm+1ppm,垂直15mm+1ppm;DGPS精度:優於25cm。值得一提的是,該款接收機於2007年2月在德國獲得了2007年度iF工業設計大獎,這款儀器的外觀打破了測量型GPS的常規模式,更具科學性與人性化設計。
中海達測繪的GPS接收機產品主要包括靜態一體化接收機HD-8200G和GD-8200X,其中HD-8200G配備有無線遙控器,可遠距離查看衛星狀況等關鍵信息,8200X配備有語音導航功能,可通過面板直接設定靜態採集關鍵參數衛星高度角和採樣間隔。RTK產品主要有珠峰HD-5800、V8 CORS RTK、V8 GNSS RTK。RTK作業精度:靜態後處理精度: 平面:±2.5mm+1ppm,高程:±5.0mm+1ppm,RTK定位精度: 平面:±1cm+1ppm,高程:±2cm+1ppm,碼差分定位精度:0.45m(CEP),單機定位精度:1.5m(CEP)。V8具有八大創新技術,詳情參見http://www.zhdgps.com 華測導航的GPS接收機產品主要有X60CORS、X20單頻接收機、X90一體化RTK、X60雙頻接收機等。國內通過中華人民共和國製造計量器具許可證獲得的精度最高的產品,其中,X90為28通道雙頻GPS接收機,集成雙頻GPS接收機、雙頻測量型GPS天線、UHF無線電、進口藍牙模組和電池,動態精度:水平10mm+1ppm,垂直20mm+1ppm;靜態精度:水平5mm+1ppm,垂直10mm+1ppm,能達到10-30公里的作用範圍(因實際地域情況有所差別),既可以承受從3米高度跌落到堅硬的地面,也可浸入水下1米深處進行測量。X90具有靜態、快速靜態、RTK、PPK、碼差分等多種測量模式,精度範圍為毫米級到亞米級。 而且可與天寶,徠卡等主流品牌聯合作業。
南方測繪的GPS接收機產品主要有RTK S82、S86、藍牙靜態GPS、等。其中S82採用一體化設計,集成GPS天線、UHF數據鏈、OEM主機板、藍牙通訊模組、鋰電池,其RTK定位精度:平面±(2cm+1ppm),垂直±(3cm+1ppm);靜態後處理精度:平面±(5mm+0.5ppm),垂直±(10mm+1ppm);單機定位精度:1.5m(CEP);碼差分定位精度:0.45m(CEP)。
◆車載GPS
當通過硬體和軟體做成GPS定位終端用於車輛定位的時候,稱為車載GPS,但光有定位還不行,還要把這個定位信息傳到報警中心或者車載GPS持有人那裡,我們稱為第三方。所以GPS定位系統中還包含了GSM網路通訊(手機通訊),通過GSM網路用簡訊的方式把衛星定位信息傳送到第三方。通過微機解讀簡訊電文,在電子地圖上顯示車輛位置。這樣就實現了車載GPS定位。 與此同時,在車上安裝相應的探測感測器,利用車載GPS定位的GSM網路通訊功能,同樣能把防盜報警信息傳送到第三方,或者把這個報警電話、簡訊直接傳送到車主手機上,完成車載GPS防盜報警。這裡可以看出,車載GPS定位的GSM網路部分實際上是一個智慧型手機,可以和第三方互相通訊,還可以把車輛被搶,司機被劫、被綁架等信息傳送到第三方。 所以說車載GPS定位是定位、防盜、防劫的。
◆類似車載GPS
類似車載gps終端的還有定位手機、個人定位器等。GPS衛星定位由於要通過第三方定位服務,所以要交納不等的月/年服務費。
目前所有的GPS定位終端,都沒有導航功能。因為再需要增加硬體和軟體,成本提高。
我們在電視裡看到的車載GPS廣告,和上述的車載GPS完全是兩回事。它是一種GPS導航產品,當需要導航時,首先定位,也就是導航的起點,這與真正的GPS定位是不同的,它不能把定位信息傳送到第三方和持有人那裡,因為導航儀中缺少手機功能。比如你把導航儀放在車裡,你朋友把車借開走了,導航儀不能發信息給你,那你就無法查找車輛位置。所以導航儀是不能定位的。
你說我買的是導航手機該行了吧,你想想,你把導航手機放在車上,現在車被盜了,那個手機會自己給你或第三方打電話發簡訊嗎?它是需要人來操作的。所以說目前的導航終端都沒有定位功能。
導航終端可以導航路線,讓你在陌生的地方不迷路,劃出路線讓你到達目的地,告訴你自己當前位置,和周邊的設施等等。
中國目前在GPS應該上取得了很大的市場.其中有很多公司是導航的.但是也有在GPS行業做定位管理的。
各種GPS/GIS/GSM/GPRS車輛監控系統軟體、GSM和GPRS移動智慧型車載終端、系統的二次開發車輛監控系統整體搭建方案.系統廣泛套用於公安,醫療,消防,交通,物流等領域。該方案基於NXP的PNX1090 Nexperia移動多媒體處理器硬體和由NXP與合作夥伴ALK Technologies聯合開發的軟體。NXP聲稱,該方案提供了設計師搭建一個帶導航能力的低成本、多媒體功能豐富的攜帶型媒體播放器所需的一切,這些多媒體功能包括:MP3播放、標準和高清晰度視頻播放和錄製、FM收音、圖像存儲和遊戲。NXP以其運行於PNX0190上的swGPS Personal軟體來實現GPS計算,從而取代了一個GPS基帶處理器,進而降低了材料清單(BOM)成本並支持現場升級。
跟隨GPS 的一系列關聯的套用都設計到數學和算法,和GIS系統,地圖投影,坐標系轉換!
由於衛星運行軌道、衛星時鐘存在誤差,大氣對流層、電離層對信號的影響,以及人為的SA保護政策,使得民用GPS的定位精度只有100米。為提高定位精度,普遍採用差分GPS(DGPS)技術,建立基準站(差分台)進行GPS觀測,利用已知的基準站精確坐標,與觀測值進行比較,從而得出一修正數,並對外發布。接收機收到該修正數後,與自身的觀測值進行比較,消去大部分誤差,得到一個比較準確的位置。實驗表明,利用差分GPS(DGPS),定位精度可提高到5米。
GPS預警器
GPS預警器是通過GPS衛星在GPS預警器中設定坐標來完成的,比如遇到一個電子眼,然後通過相關設備在電子眼的正下方設立一個坐標,這樣,使得裝上這個坐標點數據的預警器到達這個點時,在達到坐標點的前300米左右就會開始預警,告訴車主前面有電子眼測速,不能超速駕駛,這樣就起到一個預警作用。這樣的準確率跟數據點的多少是有關係的,主要就是利用衛星的定位來實現了。
試機辨真假
記者通過汽車美容店的一朋友協助,挑選了4款所謂的“GPS預警機”,通過調研和試機對比,確認其中一款是冒牌GPS的“電子狗”。並得出以下結論:
A. GPS預警器:一個預警點報警一次,單向預警;定點報警,不受干擾;預警準確率可達98%以上。可選擇的音樂和語音種類多,音質較好。
B.假GPS預警器:同一個預警點報警兩次(駛向預警點和離開預警點都報警);會受某些公共設施如電塔干擾誤報警;多有漏報,準確性率低不足70%;報警音樂和語音單一,音質較差
GPStar智慧型GPS系統
主要由兩大部分組成,即:本地的監控中心軟體管理平台和遠程的GPS智慧型車載終端。遠程的GPS智慧型車載終端將車輛所處的位置信息、運行速度、運行軌跡等數據傳回到監控中心,監控中心接收到這些數據後,會立即進行分析、比對等處理,並將處理結果以正常信息或者報警信息兩類形式顯示給管理員,由管理員決定是否要對目標車輛採取必要措施。
GPS在新世紀的發展
進入21世紀,全球定位系統(GPS)在各方面的套用都將加強和發展。本文對GPS走向21世紀時的最新發展情況,特別是當前國際GPS服務(1GS)的產品內容、套用和服務等方面作重點介紹。
一 、GPS連續運行站網和綜合服務系統的發展
在全球地基GPS連續運行站(約200個)的基礎上所組成的IGS(International GPS Service),是GPS連續運行站網和綜合服務系統的範例。它無償向全球用戶提供GPS各種信息,如GPS精密星曆快速星歷、預報星曆、IGS站坐標及其運動速率、IGS站所接收的GPS信號的相位和偽距數據、地球自轉速率等。這些信息在大地測量和地球動力學方面支持了無數的科學項目,包括電離層、氣象、參考框架、精密時間傳遞、高分辨的推算地球自轉速率及其變化、地殼運動等。
(1) IGS現在提供的軌道有三類:一是最終(精密)軌道,要在10—12天以後得到它,常用於精密定位;二是快報軌道,要在1天以後得到,它常用於大氣的水汽含量、電離層計算等;還有一類是預報軌道。
關於對GPS星鍾偏差方面的估計,目前只有兩個IGS分析中心提供。IGS目前近200個永久連續運行的全球跟蹤站中,使用的外部頻率標準近70個,其中約30個使用氫鍾,約20個使用銫原子鐘,約20個使用銣原子鐘,其餘的使用GPS內部的晶體震盪器。
(2) IGS還提供極移和世界時信息。IGS公布的最終的每日極坐標(x,y),其精度為±0.1mas,快報的相應精度為±0.2mas。GPS作為一種空間大地測量技術,本身並不具備測定世界時(UT)的功能,但由於一方面GPS衛星軌道參數和UT相關,另一方面,也和測定地球自轉速率有關,而自轉速率又是UT的時間導數,因此IGS仍能給出每天的日長(LOD)值。IGS現在還能進一步求定章動項和高解析度的極移(達每2小時1次,而不是現在的1天1次),後者主要源於IGS各觀測站觀測質量的提高,數據傳輸迅速和及時,以及數據處理方法的改進,並沒有本質的改變,而前者卻是技術上的一個跨躍。
(3) IGS提供的一個極為有用和重要的信息是IGS的那些連續運行站(跟蹤站)的坐標、相應的框架、曆元和站移動速度。前者精度好於1cm,後者精度好於1mm/y。IGS站坐標所採用的坐標參考框架是和IERS互相協調的。1993年末開始使用ITRF91,1994年使用ITRF92,1995年到1996年中期使用ITRF93,1996年中期到1998年4月一直使用ITRF94,1998年3月1日轉而採用ITRF96,1999年8月1日開始IGS採用ITRF97。
(4) IGS在測定短期章動方面的新貢獻。眾所周知,地球自轉軸在地球表面上的移動稱為極移,而它在慣性空間中的運動稱為歲差和章動。
GPS技術不能確定UT,而只能確定日長。同樣這一原則也適用於章動,即GPS數據不能測定章動的經度和傾角,但能確定這些量的時間變率(對時間的導數)。基於這一原理,用了3年的每天的ψ和ε值的資料,估算短期章動項的章動振幅,並與VLBI結果作了比較。結論認為,就測定章動短周期項而言,GPS方法優於VLBI,而對超過1個月以上的長周期而言,VLBI較優。
由於對GPS技術的IGS作出了如此大的成績和貢獻,因此1999年9月各國的VLBI站和SLR站決定也組織類似於IGS的相應的IVS和IVRS。法國的DORIS和德國的PRARE也正在考慮成立類似模式的國際組織。力求使這類空間大地測量觀測系統組織起來,提高效率、提高精度和可靠性。
就地區性的GPS連續運行站網和綜合服務系統而言,已開發國家也已做了很多這方面工作,取得了進展。在美國布設了GPS“連續運行參考站”(CORS)系統。它由美國大地測量局(NGS)負責,該系統的當前目標是(1)使美國各地的全部用戶能更方便的利用它來達到厘米級水平的定位和導航;(2)促進用戶利用CORS來發展GIS;(3)監測地殼形變;④求定大氣中水汽分布;⑤監測電離層中自由電子濃度和分布。
截止1999年9月CORS已有156個站,而美國NGS宣布為了強化CORS系統,從現在起,以每個月增加3個站的速度來改善該系統的空間覆蓋率。此外,CORS的數據和信息包括接收的偽距和相位信息、站坐標、站移動速率矢量、GPS星氣、站四周的氣象數據等,用戶可以通過信息網路,如Internet很容易下載而得到。
英國建立的“連續運行GPS參考站”(COGPS)系統的功能和目標類似於上述CORS,但結合英國本土情況還多了一項監測英倫三島周圍的海平面相對和絕對變化的任務。英國的COGPS由測繪局、環保局、氣象局、農業部、海洋實驗室共同負責。目前已有近30個GPS連續運行站,今後的打算是擴建COGPS系統和建立一個中心,其主要任務是傳輸、提供、歸檔、處理和分析GPS各站數據。
日本已建成全國近1200個GPS連續運行站網的綜合服務系統。目前它在以監測地殼形變、預報地震為主功能的基礎上,結合氣象和大氣部門開展GPS大氣學的服務。
二、 GPS套用於電離層監測
GPS在監測電離層方面的套用,也是GPS空間氣象學的開端。太空中充滿了電漿、宇宙線粒子、各種波段的電磁輻射,由於太陽常在1秒鐘內拋出百萬噸量級的帶電物,電離層由此而受到強烈干擾,這是空間氣象學研究的一個對象。通過測定電離層對GPS訊號的延遲來確定在單位體積內總自由電子含量(TEC),以建立全球的電離層數字模型。
GPS衛星發射L1和L2。兩個載波。由這兩個載波可以削弱電離層對GPS定位的影響,或者說可以求定電離層折射。因為這一折射和載波頻率有關。
當人們建立地區或全球電離層數字模型時,總是作簡化的假定,所有自由電子含量都表示在一個單層面上,該面離地面高為H。這樣的話,電子含量正可以用在接收機和衛星連線與此單層面交點(刺入點)處的電子含量Es表示,它可以視為E與刺入點處天頂距Z&#039;的函式eCos Z&#039;=Es。可以將在球面上的電子濃度Es加以模型化,例如寫成經緯度的球諧函式等,這方面有很多專家提出了各種模型。IGS提出了一種電離層地圖的交換格式(10nosphere Map Exchange Format,IONEX—Format),它的作用是使基於各種理論和技術所獲得的電離層地圖能在統一規格的基礎上進行綜合和比較。電離層模型有各不相同的理論基礎,而取得的數據來源的技術也不同,數據覆蓋面也不完整,所以目前只能將IGS和全球各種TEC的圖和GPS衛星訊號的差分碼偏差(differential code biases—DCBS)用IONEX形式向全世界用戶提供,下一步將通過比較,逐步聯合起來。
三、 GPS套用於對流層監測
在GPS套用中,早期主要是軌道誤差影響定位精度,而且早期的GPS基線相對來說比較短,高差不大,因此對對流層的研究沒有給予很大的重視。直到近期由於GPS軌道精度大大提高后,對流層折射已成為限制GPS定位精度提高的一個重要障礙。假設一個高程基本為零的地區,接收機所接收的GPS訊號從天頂方向傳來的話,其延遲可以達到2.2—2.6m這一量級,而2小時內這一延遲變化可達10cm不是少見的(所以IGS分析中心提供的對流層參數是用2小時間隔一次)。也由於這個實際情況,對流層折射要顧及其隨機過程的變化來加以模型化。
在GPS套用於對流層研究中,IGS的快速軌道和預報軌道信息對於天氣預報會起重大作用。此外,IGS通過德國GFZ的“IGS對流層比較和協調中心”提供的每2小時的對流層天頂延遲系列就象是控制點,對於區域性或局部性的對流層研究來說,可以起到對流層延遲絕對值的標定作用。
與地基GPS大氣監測不同,星基或空基GPS掩星法測定氣象的技術有覆蓋面廣,垂直分辨好,數據獲取速度快的優點。這一技術的原理是將GPS接收機放在某一低軌衛星(LEO)或飛行器的平台上,該GPS接收機一方面起到對該衛星(或飛行器)精確定軌的作用,同時又套用GPS掩星技術起到大氣探測器的作用。在1997年進行的GPS/MET研究項目,證實了這個構想是可行的。預定於2000年4月發射的CHAMP衛星要利用GPS掩星法進行全球對流層折射(包括大氣可降水分)的測定。
在今後幾年中,還有阿根廷的SAC—C,我國台灣的COS—MIC,這些LEO衛星都要用星載GPS來定軌和利用掩星法測大氣。
今後利用星載GPS的氣象和電子濃度截面數值,結合地面GPS站數據,作成層折圖像提供使用。今後3年中GPS/MET項目研究還要進行6次,預計它將在天氣預報、空間天氣預報、氣象監測方面做出巨大貢獻。
四 、GPS作為衛星測高儀的套用
多路徑效應是GPS定位中的一種噪音,至今仍是高精度GPS定位中一個很不容易解決的“干擾”。過去幾年利用大氣對GPS信號延遲的噪聲發展了GPS大氣學,目前也正在利用GPS定位中的多路徑效應發展GPS測高技術,即利用空載GPS作為測高儀進行測高。它是通過利用海面或冰面所反射的GPS信號,求定海面或冰面地形,測定波浪形態,洋流速度和方向。通常衛星測高或空載測高測的是一個點,連續測量結果在反向面上是一個截面,而GPS測高則是測量有一定寬度的帶,因此可以測定反射表面的起伏(地形)。據報告,試驗時在空載平面安裝2台GPS接收機,1台天線向上用於對載體的定位,1台天線向下,用於接收GPS在反射面上的訊號。美國在海上作了測定洋流和波浪的試驗。丹麥在格凌蘭作了測定冰面地形及其變化的試驗。
五 、衛星一衛星追蹤技術
衛星對衛星的追蹤(SST)技術的實質是高解析度的測定2顆衛星間的距離變化,一般它分為兩類,即高低衛星追蹤和低低衛星追蹤。前一類是高軌衛星(如對地靜止衛星,GPS衛星等)追蹤低軌(LEO)衛星或空間飛行器,後一類是處於大體為同一低軌道(LEO)上的2顆衛星之間的追蹤,2顆衛星間可以相距數百千米,這兩類SST技術都將LEO衛星作為地球重力場的感測器,以衛星間單向或雙向的微波測距系統測定衛星間的相對速度及其變率。這一速度的不規則變化所反映的信息中,就包含了地球重力場信息。衛星軌道愈低,這一速度變化受重力場的影響愈明顯,所反映重力場的解析度也愈高。
這兩類SST技術中,以高低衛星追蹤所獲得的信息比較豐富,這是因為:
高軌衛星,特別是有多個高軌衛星(如GPS)能獲得低軌衛星處於大部分軌道上所傳遞的信息;(2)對地面重力場的中波、長波、短波信息都能恢復;(3)不同於低軌衛星,高軌衛星受重力場影響比較小,因此衛星間速度變化能比較好的反映重力場信息,同時高衛星的軌道也比較容易精確的求定。
SST技術的第一次試驗是在1975年進行的,高軌衛星是對地靜止衛星(GEO)ETS一6,而低軌衛星為NIMBUS—6和APOLLO—SYYUS,但由於觀測值的解析度和精度太低(低於10μm/s),而沒有取得很滿意的成果,因此NASA放棄了此項研究;一直到1991年,利用GPS衛星作高軌衛星再次進行了試驗,用LANDSAT作為低軌衛星,在該衛星平面上裝GPS接收機,進行定軌和測定高低衛星間距離及其變率的試驗,後來在T/P海洋測高衛星上也作過類似試驗,也由於測定距離及其變率的解析度和精度不高,而沒有令人滿意的結果;這次歐空局(ESA)在德國(GFZ)主持下所發射的CHAMP,GRACE和GOCE3顆衛星,在今後10年中將專門進行SST和衛星重力梯度測量(SGG)的試驗,以改善對地球重力場的認識。
IGS認為持續地支持低軌衛星(LEO)是它的一項重要任務方面,因此專門建立了LEO工作組。LEO工作組制定了工作計畫,並提出了一些建議:①建立IGS為追蹤LEO的相應標準化地面站網,以滿足LEO的要求;②IGS以短於24小時速率,對這些地面站網的數據進行傳輸和處理,提供LEO所需要的數據和產品;③為地面站網的GPS 1 Hz採樣率數據建立相應的GPS數據交換格式;④了解調查IGS精密軌道對LEO平台上GPS數據採集的作用和意義。

相關搜尋

熱門詞條

聯絡我們