電鍍廢水處理

電鍍廢水處理

電鍍廢水處理,指的是電鍍工廠(或車間)排出的廢水和廢液,如鍍件漂洗水、廢槽液、設備冷卻水和沖洗地面水等這方面進行處理。其水質因生產工藝而異,有的含鉻,有的含鎳或含鎘、含氰、含酸、含鹼等。廢水中的金屬離子有的以簡單的陽離子形態存在(如Ni2+、Cu2+等),有的以酸根陰離子形式存在。 電鍍廢水多有毒,危害較大。如氰可引起人畜急性中毒,致死,低濃度長期作用也能造成慢性中毒。鎘可使腎臟發生病變,並會引起痛痛病。六價鉻可引起肺癌、腸胃道疾病和貧血,並會在骨、脾和肝臟內蓄積。因此,電鍍廢水必須嚴格控制,妥善處理。

基本信息

簡介

電鍍工廠(或車間)排出的廢水和廢液,如鍍件漂洗水、廢槽液、設備冷卻水和沖洗地面水等,其水質因生產工藝而異,有的含鉻,有的含或含鎘、含、含酸、含鹼等。廢水中的金屬離子有的以簡單的陽離子形態存在(如Ni2+ 、Cu2+ 等),有的以酸根陰離子形式存在(如CrO厈等),有的則以複雜的絡合陰離子形式存在【如Au(CN)娛、Cd(CN)厈、Cu(P2O7)愹等】。一種廢水中常含有一種以上的有害成分,如氰化鍍鎘廢水中既有氰又有。此外,一般鍍液中常含有機添加劑

電鍍廢水多有毒,危害較大。如氰可引起人畜急性中毒,致死,低濃度長期作用也能造成慢性中毒。鎘可使腎臟發生病變,並會引起痛痛病。六價鉻可引起肺癌、腸胃道疾病和貧血,並會在骨、肝臟內蓄積。因此,電鍍廢水必須嚴格控制,妥善處理。

發展歷史

電鍍廢水的處理已有數十年歷史,可分為三個階段:第一階段,大致在20世紀50年代前後,主要著眼於廢水、廢渣的處理技術。處理的主要對象為氰化物和六價鉻。處理方法主要是化學沉澱法。第二階段大致在60年代,開始注意工藝改革和綜合利用,並著手處理鎘和其他金屬。第三階段從70年代起,開始研究從根本上控制污染的技術,以防為主,改革電鍍工藝,研究廢水的閉路循環。在工藝改革上用低濃度工藝代替高濃度工藝(如低鉻代替高鉻鍍鉻),用無毒或低毒材料的電鍍工藝代替有毒材料的工藝(如以無氰工藝代替有氰工藝)。

廢水來源

1、鍍件清洗水。占80%左右。
2、鍍液過濾沖洗水和廢鍍液。
3、電鍍車間“跑、冒、滴、漏”排放的廢液。

危害

電鍍廢水就其總量來說,比如造紙、印染、化工、等行業的水量小,污染面窄,但由於電鍍廠點分布廣,廢水中所含高毒物質的種類多,其危害性是很大的。未經處理達標的電鍍廢水排入河道、池塘,滲入地下,不但會危害環境,而且會污染飲用水和工業用水。電鍍廢水中含有鉻鋅、銅、鎘,鉛、鎳等重金屬離子以及酸、鹼氰化物等具有很大毒性的雜物。有的還屬於致癌和致畸變的劇毒物質.因此必須認真地加以處理.以免對人們造成危害。
電鍍工廠(或車間)排出的廢水和廢液,如鍍件漂洗水、廢槽液、設備冷卻水和沖洗地面水等,其水質因生產工藝而異,有的含鉻,有的含鎳或含鎘、含氰、含酸、含鹼等。廢水中的金屬離子有的以簡單的陽離子形態存在(如Ni2+、Cu2+等),有的以酸根陰離子形式存在(如CrO厈等),有的則以複雜的絡合陰離子形式存在【如Au(CN)娛、Cd(CN)厈、Cu(P2O7)愹等】。一種廢水中常含有一種以上的有害成分,如氰化鍍鎘廢水中既有氰又有鎘。此外,一般鍍液中常含有機添加劑。
電鍍廢水多有毒,危害較大。如氰可引起人畜急性中毒,致死,低濃度長期作用也能造成慢性中毒。鎘可使腎臟發生病變,並會引起痛痛病。六價鉻可引起肺癌、腸胃道疾病和貧血,並會在骨、脾和肝臟內蓄積。因此,電鍍廢水必須嚴格控制,妥善處理。

處理方法

反滲透法處理廢水反滲透法處理廢水
目前一般用下述方法處理電鍍廢水:化學法 向廢水中投加藥劑,使其中的有毒物質轉化成為無毒物質或毒性大為降低的沉澱物。化學法包括:中和沉澱法 如酸性廢水用鹼性廢水或投加鹼性物質進行中和,形成沉澱物。
中和混凝沉澱法 例如在離子交換法除鉻工藝中,陽離子交換柱再生廢液是含有重金屬離子(Zn2+ 、Cr3+ 、Fe3+ 等)的強酸性廢液,可用去除酸根後陰離子交換柱的再生廢鹼液或加鹼中和,使之以氫氧化物形式沉澱。如投加高分子絮凝劑可改變這種沉澱物的沉降性能和分離性能。
氧化法 如處理含氰廢水時,常用次氯酸鹽在鹼性條件下氧化其中的氰離子,使之分解成低毒的氰酸鹽,然後再進一步降解為無毒的二氧化碳和氮。
還原法 如含鉻廢水用亞硫酸氫鈉或硫酸亞鐵加石灰處理,使Cr6+ 還原成毒性低的Cr3+ ,並形成氫氧化鉻沉澱。
鋇鹽法 如含鉻廢水用鋇鹽處理,使鉻酸根成為鉻酸鋇沉澱。
鐵氧體法 電鍍廢水經過處理產生氫氧化鐵或其他重金屬氫氧化物沉澱,通過氧化反應使重金屬轉入強磁性的鐵氧體結晶中。此法可用於含鉻廢水的處理。化學法設備簡單,投資較少,套用較廣。但常留下污泥需要進一步處理,而且電鍍廢水分散,污泥不易集中處理和利用。
物理化學法 主要包括電解法、離子交換法和膜分離法。
電解法 以處理含鉻廢水為例,利用可溶性鐵陽極,在直流電場作用下,產生亞鐵離子,在酸性條件下使廢水中以CrO厈和Cr2O崼存在的Cr6+ 離子還原成為Cr3+ 離子,隨著電解過程中廢水pH值升高,形成Cr(OH)3沉澱。採用不同材料的陽極可處理含有其他各種金屬離子的廢水。電解法操作管理簡單,除能夠處理鍍鉻漂洗水外,還可以處理鈍化、陽極化、磷化等漂洗水,並有成套設備;但消耗鋼材、電能較多,對產生的污泥還沒有妥善的處理方法。
離子交換法 利用離子交換樹脂活性基團上的可交換離子(H+ 、Na+ 、OH- 等),去除廢水中的陽、陰離子。此法處理電鍍廢水不僅可回用水,還可回收金屬離子溶液。這種方法已用於處理含有金、鎳、銅、鎘、鉻等廢水。近年來人工合成的專門用於處理電鍍廢水的弱酸、弱鹼大孔樹脂,可分別用於去除鉻、鎳和銅,以及一些金屬的氰化絡合陰離子(見廢水離子交換處理法)。一般說來,離子交換法初次投資較大,操作管理水平要求較高,但處理效果穩定,由於能回用金屬和水,是當前電鍍廢水實現閉路循環的主要治理方法之一。存在的主要問題是再生廢液會有鈉、鐵、氯根等雜質離子不能直接回用於鍍槽中,排入環境會造成污染。
膜分離法 利用半透膜或離子交換膜等膜材料,在外加推動力下,使廢水中的溶解物和水分離濃縮,以淨化廢水。在膜分離法中,反滲透法用於含鎳、含鎘廢水的濃縮處理已套用於生產。隔膜電解法用於再生鍍鉻廢液。擴散滲析法 可用於酸液回收。膜分離方法成本較高。
蒸發濃縮法 利用熱源和蒸發器在常壓或負壓下直接濃縮廢水。用這種方法處理高濃度廢水比較經濟,常同三級逆流漂洗、氣-水噴淋,或同離子交換法聯合使用。目前生產中廣泛採用鈦管薄膜蒸發器和蒸發釜來濃縮含鉻廢水、含氰廢水等,也是閉路循環的主要處理流程之一。
展望電鍍廢水處理技術的發展前景,首先是壓縮水量,普遍推廣逆流漂洗和噴淋技術;其次,對化學法產生的污泥和離子交換再生廢液進行綜合利用,以及研製適用於處理電鍍廢水的各種優質樹脂和膜,以及進一步研究和完善閉路循環系統,以實現資源的充分利用。

研發套用

常規方法處理不達標原因目前廢水的處理方法一般採用物化分流,綜合兩段處理。前段處理多分三類水;含鉻廢水、含氰廢水和綜合水(銅鎳鋅水)。含鉻廢水用還原劑使之變價還原,含氰廢水用兩級氧化破氰,銅鎳鋅水直接與前兩股水匯合而成為綜合水。後段處理綜合水,基本上是用鹼(燒鹼或石灰)、聚合氯化鋁(PAC)和有機絮凝劑(PAM),具體操作是:把綜合水的pH值提到10--13,鹼濃度大而迫使鹼與重金屬的反應向生成氫氧化物的方向進行。由於pH值>9,排放口又得用酸中和使pH值降到9以下。銅、鎳、鋅等重金屬都具有二性還原性質,這就是化學法處理重金屬不能達標的原因。
電鍍廢水裝置電鍍廢水裝置

加強重金屬廢水治理技術的研發和套用
處理含重金屬電鍍廢水的傳統方法有化學法、物理法、電解法、離子交換法和生物法等。這些單一的處理方法都不同程度存在著成本高、能耗大、達標率低和金屬回收率低的弊端。有資訊顯示,我國電鍍企業中套用化學沉澱法處理重金屬廢水的占絕大多數。化學沉澱法的原理是通過化學反應使廢水中的重金屬離子轉變為不溶於水的金屬化合物(如硫化物沉澱、中和沉澱和鐵氧體沉澱等)。處理過程中受沉澱劑和pH的影響,處理後的水質往往不能達標,沉澱物分離困難,尚需進一步處理。另外,單一處理方法還有產生二次污染的危險。
針對傳統治理方法的缺點和不足,近年來我國環境保護工作者採用複合處理和自動控制相結合處理電鍍重金屬廢水的方法已形成一種趨勢。其特點是流程集中,設備小型化,節約了治理成本,提高了重金屬回收率。複合套用包括化學沉澱、重金屬捕集、膜處理及低能耗濃縮技術等。一批專業從事設計、製造重金屬廢水治理整套設備的企業應運而生。如利用高分子重金屬捕集沉澱劑,能在常溫下與廢水中多種重金屬離子反應生成不溶於水的螯合鹽,再加入絮凝劑形成重金屬絮狀沉澱,從而達到去除重金屬的目的。用該方法處理40mg/LCu2+、28mg/LNi2+和26mg/LZn2+的電鍍廢水,排出水重金屬質量濃度均低於0.5mg/L[5]。再如,某公司開發研製的集重金屬捕集、轉化、中和、絮凝及沉澱方法為一體處理含Cr6+、Zn2+、Cu2+、Fe2+、和Ni2+一步完成的方法,實用性強,出水達標狀態穩定,已成功套用於電鍍生產線中[6]。
值得提出的是,近幾年,利用天然礦物和植物治理重金屬污染技術也出現了新進展。在礦物方面,某專利技術表明,在含有重金屬離子的廢液中,加入能消除、轉化廢水中的有害物,然後經物理化學處理,將重金屬成分轉變為水處理劑,實現了化害為寶[7]。在植物方面,利用植物固定、吸收、提取、分解、轉化、清除水和土壤中的重金屬污染物也取得了可喜的成果。我國生態環境工作者已發現10餘種“超富集”植物。該植物的特點是在其生長過程中,能將被重金屬污染的水體和土壤中的重金屬離子超量(較一般植物而言)富集在花、葉、莖部分,其成熟收穫後,通過焚燒等處理實現重金屬回收。如新發現被命名為李氏禾的多年濕生植物,生長期間葉片中Cr(Ⅵ)高達2.977g/kg、Cu2+2.129g/kg、Ni2+1.349g/kg對重金屬吸附率達89.3%以上[8]。該方法已套用在廣西河池大環江地域生態恢復上,取得了初步成效。
電鍍和金屬加工業廢水中鋅的主要來源是電鍍或酸洗的拖帶液。污染物經金屬漂洗過程又轉移到漂洗水中。酸洗工序包括將金屬(鋅或銅)先浸在強酸中以去除表面的氧化物,隨後再浸入含強鉻酸的光亮劑中進行增光處理。該廢水中含有大量的鹽酸和鋅、銅等重金屬離子及有機光亮劑等,毒性較大,有些還含致癌、致畸、致突變的劇毒物質,對人類危害極大。因此,對電鍍廢水必須認真進行回收處理,做到消除或減少其對環境的污染。

相關詞條

相關搜尋

熱門詞條

聯絡我們