空氣力學

空氣力學

空氣動力學,就是研究物體在空氣中運動而產生各種力的影響的學科。

空氣動力學,就是研究物體在空氣中運動而產生各種力的影響的學科。空氣動力學是力學的一個分支,它主要研

空氣力學空氣力學
究物體在同氣體相對運動情況下的受力特性、氣體流動規律和伴隨發生的物理化學變化。它是在流體力學的基礎上,隨著航空工業和噴氣推進技術的發展而成長起來的一個學科。

空氣動力學的發展簡史

最早對空氣動力學的研究,可以追溯到人類對彈丸在飛行時的受力和力的作用方式的種種猜測。17世紀後期,荷蘭物理學家惠更斯首先估算出物體在空氣中運動的阻力;1726年,牛頓套用力學原理和演繹方法得出:在空氣中運動的物體所受的力,正比於物體運動速度的平方和物體的特徵面積以及空氣的密度。這一

空氣力學空氣力學
工作可以看作是空氣動力學經典理論的開始。

1755年,數學家歐拉得出了描述無粘性流體運動的微分方程,即歐拉方程。這些微分形式的動力學方程在特定條件下可以積分,得出很有實用價值的結果。19世紀上半葉,法國納維英國斯托克斯提出了描述粘性不可壓縮流體動量守恆的運動方程,後稱為納維-斯托克斯方程

到19世紀末,經典流體力學的基礎已經形成。20世紀以來,隨著航空事業的迅速發展,空氣動力學便從流體力學中發展出來並形成力學的一個新的分支。

航空要解決的首要問題是如何獲得飛行器所需要的舉力、減小飛行器的阻力和提高它的飛行速度。這就要從理論和實踐上研究飛行器與空氣相對運動時作用力的產生及其規律。1894年,英國蘭徹斯特首先提出無限翼展機翼或翼型產生舉力的環量理論,和有限翼展機翼產生舉力的渦鏇理論等。但蘭徹斯特的想法在當時並未得到廣泛重視。

約在1901~1910年間,庫塔儒科夫斯基分別獨立地提出了翼型的環量和舉力理論,並給出

空氣力學空氣力學
舉力理論的數學形式,建立了二維機翼理論。1904年,德國普朗特發表了著名的低速流動的邊界層理論。該理論指出在不同的流動區域中控制方程可有不同的簡化形式。

邊界層理論極大地推進了空氣動力學的發展。普朗特還把有限翼展的三維機翼理論系統化,給出它的數學結果,從而創立了有限翼展機翼的舉力線理論。但它不能適用於失速、後掠和小展弦比的情況。1946年美國的瓊期提出了小展弦比機翼理論,利用這一理論和邊界層理論,可以足夠精確地求出機冀上的壓力分布和表面摩擦阻力。

近代航空和噴氣技術的迅速發展使飛行速度迅猛提高。在高速運動的情況下,必須把流體力學和熱力學這兩門學科結合起來,才能正確認識和解決高速空氣動力學中的問題。1887~1896年間,奧地利科學家馬赫在研究彈丸運動擾動的傳播時指出:在小於或大於聲速的不同流動中,彈丸引起的擾動傳播特徵是根本不同的。

在高速流動中,流動速度與當地聲速之比是一個重要的無量綱參數。1929年,德國空氣動力學家阿克萊特首先把這個無量綱參數與馬赫的名字聯繫起來,十年後,馬赫數這個特徵參數在氣體動力學中廣泛引用。

小擾動在超聲速流中傳播會疊加起來形成有限量的突躍——激波。在許多實際超聲速流動中也存在著激波。氣流通過激波流場,參量發生突躍,熵增加而總能量保持不變。

英國科學家蘭金在1870年、法國科學家許貢紐在1887年分別獨立地建立了氣流通過激波所應滿足的關係式,為超聲速流場的數學處理提供了正確的邊界條件。對於薄冀小擾動問題,阿克萊特在1925年提出了二維線化機冀理論,以後又相應地出現了三維機翼的線化理論。這些超聲速流的線化理論圓滿地解決了流動中小擾動的影響問

空氣力學空氣力學
題。

在飛行速度或流動速度接近聲速時,飛行器的氣動性能發生急劇變化,阻力突增,升力驟降。飛行器的操縱性和穩定性極度惡化,這就是航空史上著名的聲障。大推力發動機的出現衝過了聲障,但並沒有很好地解決複雜的跨聲速流動問題。直至20世紀60年代以後,由於跨聲速巡航飛行、機動飛行,以及發展高效率噴氣發動機的要求,跨聲速流動的研究更加受到重視,並有很大的發展。

遠程飛彈人造衛星的研製推動了高超聲速空氣動力學的發展。在50年代到60年代初,確立了高超聲速無粘流理論和氣動力的工程計算方法。60年代初,高超聲速流動數值計算也有了迅速的發展。通過研究這些現象和規律,發展了高溫氣體動力學高速邊界層理論非平衡流動理論等。

由於在高溫條件下全引起飛行器表面材料的燒蝕和質量的引射,需要研究高溫氣體的多

空氣力學空氣力學
相流。空氣動力學的發展出現了與多種學科相結合的特點。

空氣動力學發展的另一個重要方面是實驗研究,包括風洞等各種實驗設備的發展和實驗理論、實驗方法、測試技術的發展。世界上第一個風洞是英國的韋納姆在1871年建成的。到今天適用於各種模擬條件、目的、用途和各種測量方式的風洞已有數十種之多,風洞實驗的內容極為廣泛。

20世紀70年代以來,雷射技術電子技術電子計算機的迅速發展,極大地提高了空氣動力學的實驗水平和計算水平,促進了對高度非線性問題和複雜結構的流動的研究。

除了上述由航空航天事業的發展推進空氣動力學的發展之外,60年代以來,由於交通、運輸、建築、氣象、環境保護和能源利用等多方面的發展,出現了工業空氣動力學等分支學科。

空氣動力學的研究內容

通常所說的空氣動力學研究內容是飛機飛彈等飛行器在名種飛行條件下流場中氣體的速度、壓力和密度等參量的變化規律,飛行器所受的舉力阻力等空氣動力及其變化規律,氣體介質或氣體

空氣力學空氣力學
與飛行器之間所發生的物理化學變化以及傳熱傳質規律等。從這個意義上講,空氣動力學可有兩種分類法:

首先,根據流體運動的速度範圍或飛行器的飛行速度,空氣動力學可分為低速空氣動力學和高速空氣動力學。通常大致以400千米/小時這一速度作為劃分的界線。在低速空氣動力學中,氣體介質可視為不可壓縮的,對應的流動稱為不可壓縮流動。大於這個速度的流動,須考慮氣體的壓縮性影響和氣體熱力學特性的變化。這種對應於高速空氣動力學的流動稱為可壓縮流動。

其次,根據流動中是否必須考慮氣體介質的粘性,空氣動力學又可分為理想空氣動力學(或理想氣體動力學)和粘性空氣動力學。

除了上述分類以外,空氣動力學中還有一些邊緣性的分支學科。例如稀薄氣體動力學高溫氣體動力學等。

在低速空氣動力學中,介質密度變化很小,可視為常數,使用的基本理論是無粘二維和三維的位勢流、翼型理論、舉力線理論、舉力面理論和低速邊界層理論等;對於亞聲速流動,無粘位勢流動服從非線性橢圓型偏微分方程,研究這類流動的主要理論和近似方法有小擾動線化方法普朗特-格勞厄脫法則卡門-錢學森公式速度圖法,在粘性流動方面有可壓縮邊界層理論;對於超聲速流動,無粘流動所服從的方程是非線性雙曲型偏微分方程。

在超聲速流動中,基本的研究內容是壓縮波、膨脹波、激波、普朗特-邁耶爾流動、錐型流,等等。主要的理論處

空氣力學空氣力學
理方法有超聲速小擾動理論、特徵線法和高速邊界層理論等。跨聲速無粘流動可分外流和內流兩大部分,流動變化複雜,流動的控制方程為非線性混合型偏微分方程,從理論上求解困難較大。

高超聲速流動的主要特點是高馬赫數和大能量,在高超聲速流動中,真實氣體效應和激波與邊界層相互干擾問題變得比較重要。高超聲速流動分無粘流動和高超聲速粘性流兩大方面。

工業空氣動力學主要研究在大氣邊界層中,風同各種結構物和人類活動間的相互作用,以及大氣邊界層內風的特性、風對建築物的作用、風引起的質量遷移、風對運輸車輛的作用和風能利用,以及低層大氣的流動特性和各種顆粒物在大氣中的擴散規律,特別是端流擴散的規律,等等。

空氣動力學的研究方法

空氣動力學的研究,分理論和實驗兩個方面。理論和實驗研究兩者彼此密切結合,相輔相成。理論研究所依據的一般原理有:運動學方面,遵循質量守恆定律;動力學方面,遵循牛頓第二定律;能量轉換和傳遞方面,遵循能量守恆定律;熱力學方面,遵循熱力學第一和第二定律;介質屬性方面,遵循相應的氣體狀態方程和粘性、導熱性的變化規律,等等。

實驗研究則是藉助實驗設備或裝置,觀察和記錄各種流動現象,測量氣流同物體的相互作用,發現新的物理特點

空氣力學空氣力學
並從中找出規律性的結果。由於近代高速電子計算機的迅速發展,數值計算在研究複雜流動和受力計算方面起著重要作用,高速電子計算機在實驗研究中的作用也日益增大。因此,理論研究、實驗研究、數值計算三方面的緊密結合是近代空氣動力學研究的主要特徵。

空氣動力學研究的過程一般是:通過實驗和觀察,對流動現象和機理進行分析,提出合理的力學模型,根據上述幾個方面的物理定律,提出描述流動的基本方程和定解條件;然後根據實驗結果,再進一步檢驗理論分析或數值結果的正確性和適用範圍,並提出進一步深入進行實驗或理論研究的問題。如此不斷反覆、廣泛而深入地揭示空氣動力學問題的本質。

20世紀70年代以來,空氣動力學發展較為活躍的領域是湍流、邊界層過渡、激波與邊界層相互干擾、跨聲速流動、渦鏇和分離流動、多相流、數值計算和實驗測試技術等等。此外,工業空氣動力學、環境空氣動力學,以及考慮有物理化學變化的氣體動力學也有很大的發展。

其它力學分支學科

靜力學、動力學、流體力學、分析力學、運動學、固體力學、材料力學、複合材料力學、流變學、結構力學

空氣力學空氣力學
、彈性力學、塑性力學、爆炸力學、磁流體力學、空氣動力學、理性力學、物理力學、天體力學、生物力學、計算力學

主要物理學分支

物理學概覽、力學、熱學、光學、聲學、電磁學、核物理學、固體物理學

相關搜尋

熱門詞條

聯絡我們