電磁感應定律

電磁感應定律

因磁通量變化產生感應電動勢的現象,閉合電路的一部分導體在磁場裡做切割磁感線的運動時,導體中就會產生電流,這種現象叫電磁感應。閉合電路的一部分導體在磁場中做切割磁感線運動,導體中就會產生電流。這種現象叫電磁感應現象。產生的電流稱為感應電流。這是國中物理課本為便於學生理解所定義的電磁感應現象,不能全面概括電磁感現象:閉合線圈面積不變,改變磁場強度,磁通量也會改變,也會發生電磁感應現象。所以準確的定義如下:因磁通量變化產生感應電動勢的現象。電動勢的方向(公式中的負號)由楞次定律提供。楞次定律指出:感應電流的磁場要阻礙原磁通的變化。對於動生電動勢也可用右手定則判斷感應電流的方向,進而判斷感應電動勢的方向。“通過電路的磁通量”的意義會由下面的例子闡述。傳統上有兩種改變通過電路的磁通量的方式。至於感應電動勢時,改變的是自身的磁場,例如改變生成場的電流(就像變壓器那樣)。而至於動生電動勢時,改變的是磁場中的整個或部份電路的運動,例如像在同極發電機中那樣。感應電動勢的大小由法拉第電磁感應定律確定;e(t) = -n(dΦ)/(dt)。對動生的情況也可用E=BLV來求。

基本信息

發現歷程

法拉第定律最初是一條基於觀察的實驗定律。後來被正式化,其偏導數的限制版本,跟其他的電磁學定律一塊被列麥克斯韋方程組的現代赫維賽德版本。
法拉第電磁感應定律是基於法拉第於1831年所作的實驗。這個效應被約瑟·亨利於大約同時發現,但法拉第的發表時間較早。
見麥克斯韋討論電動勢的原著。
於1834年由波羅的海德國科學家海因里希·楞次發現的楞次定律,提供了感應電動勢的方向,及生成感應電動勢的電流方向。
提出問題
1820年H.C.奧斯特發現電流磁效應後,有許多物理學家便試圖尋找它的逆效應,提出了磁能否產生電,磁能否對電作用的問題。
研究
1822年D.F.J.阿喇戈和A.von洪堡在測量地磁強度時,偶然發現金屬對附近磁針的振盪有阻尼作用。
1824年,阿喇戈根據這個現象做了銅盤實驗,發現轉動的銅盤會帶動上方自由懸掛的磁針鏇轉,但磁針的鏇轉與銅盤不同步。稍滯後,電磁阻尼和電磁驅動是最早發現的電磁感應現象,但由於沒有直接表現為感應電流,當時未能予以說明。
定律提出
1831年8月,法拉第在軟鐵環兩側分別繞兩個線圈,其一為閉合迴路,在導線下端附近平行放置一磁針,另一與電池組相連,接開關,形成有電源的閉合迴路。實驗發現,合上開關,磁針偏轉;切斷開關,磁針反向偏轉,這表明在無電池組的線圈中出現了感應電流。法拉第立即意識到,這是一種非恆定的暫態效應。緊接著他做了幾十個實驗,把產生感應電流的情形概括為5類:變化的電流
,變化的磁場,運動的恆定電流,運動的磁鐵,在磁場中運動的導體,並把這些現象正式定名為電磁感應。進而,法拉第發現,在相同條件下不同金屬導體迴路中產生的感應電流與導體的導電能力成正比,他由此認識到,感應電流是由與導體性質無關的感應電動勢產生的,即使沒有迴路沒有感應電流,感應電動勢依然存在。
電磁感應定律後來,給出了確定感應電流方向的楞次定律以及描述電磁感應定量規律的法拉第電磁感應定律。並按產生原因的不同,把感應電動勢分為動生電動勢和感生電動勢兩種,前者起源於洛倫茲力,後者起源於變化磁場產生的有鏇電場。

區分

電磁感應現象不應與靜電感應混淆。電磁感應將電動勢與通過電路的磁通量聯繫起來,而靜電感應則是使用另一帶電荷的物體使物體產生電荷的方法。

定律簡介

電磁感應現象是電磁學中最重大的發現之一,它顯示了電、磁現象之間的相互聯繫和轉化,對其本質的深入研究所揭示的電、磁場之間的聯繫,對麥克斯韋電磁場理論的建立具有重大意義。電磁感應現象在電工技術、電子技術以及電磁測量等方面都有廣泛的套用。
若閉合電路為一個n匝的線圈,則又可表示為:式中n為線圈匝數,ΔΦ為磁通量變化量,單位Wb,Δt為發生變化所用時間,單位為s.ε為產生的感應電動勢,單位為V.
計算公式
電磁感應定律最基本的公式是e=-n(dΦ)/(dt),常有一些人誤人子弟不加負號,這樣既忽略了楞次定律阻礙的作用,也不能在相平面上自圓其說。
(1)在時域上表達式為e(t)=-n(dΦ)/(dt),其中e是時間t的函式
(2)在復頻域上表達式為E=-jwnΦ,加粗的表示相量
(3)如果只看大小|E|=n|-(dΦ)/(dt)|
[感應電動勢的大小計算公式]
1)E=-n*ΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數,ΔΦ/Δt磁通量的變化率}
2)E=-BLVsinA(切割磁感線運動)
E=BLV中的v和L不可以和磁感線平行,但可以不和磁感線垂直,其中角A為v或L與磁感線的夾角。{L:有效長度(m)}
3)Em=nBSω(交流發電機最大的感應電動勢){Em:感應電動勢峰值}
4)E=-B(L^2)ω/2(導體一端固定以ω鏇轉切割){ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS{Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}
3.感應電動勢的正負極可利用感應電流方向判定{電源內部的電流方向:由負極流向正極}
*4.自感電動勢E自=-n*ΔΦ/Δt=LΔI/Δt{L:自感係數(H)(線圈L有鐵芯比無鐵芯時要大),ΔI:變化電流,Δt:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}

感應電流

1.電路是閉合且通的
2.穿過閉合電路的磁通量發生變化電磁感應定律(如果缺少一個條件,就不會有感應電流產生).
感應電動勢的種類:動生電動勢和感生電動勢。
動生電動勢是因為導體自身在磁場中做切割磁感線運動而產生的感應電動勢,其方向用右手定則判斷,使大拇指跟其餘四個手指垂直並且都跟手掌在一個平面內,把右手放入磁場中,讓磁感線垂直穿入手心,大拇指指嚮導體運動方向,則其餘四指指向動生電動勢的方向。動生電動勢的方向與產生的感應電流的方向相同。右手定則確定的動生電動勢的方向符合能量轉化與守恆定律。
感生電動勢是因為穿過閉合線圈的磁場強度發生變化產生渦鏇電場導致電流定向運動。其方向符合楞次定律。右手拇指指向磁場變化的反方向,四指握拳,四指方向即為感應電動勢方向。

不同現象

有些物理學家注意到法拉第定律是一條描述兩種現象的方程:由磁力在移動中的電線中產生的動生電動勢,及由磁場轉變而成的電力所產生的感生電動勢。就像理察費曼指出的那樣:
電磁感應定律所以“通量定則”,指出電路中電動勢等於通過電路的磁通量變化率的,同樣適用於通量不變化的時候,這是因為場有變化,或是因為電路移動(或兩者皆是)……但是在我們對定則的解釋里,我們用了兩個屬於完全不同個案的定律:“電路運動”的和“場變化”的。
我們不知道在物理學上還有其他地方,可以用到一條如此簡單且準確的通用原理,來明白及分析兩個不同的現象。
–理察·P·費曼?《費曼物理學講義》

電動勢

我們知道,要使閉合電路中有電流,這個電路中必須有電源,因為電流是由電源的電動勢引起的。在電磁感應現象里,既然閉合電路里有感應電流,那么這個電路中也必定有電動勢,在電磁感應現象中產生的電動勢叫做感應電動勢。
感應電動勢分為感生電動勢和動生電動勢。
感生電動勢的大小跟穿過閉合電路的磁通量改變的快慢有關係,E=ΔΦ/Δt.
產生動生電動勢的那部分做切割磁力線運動的導體就相當於電源。
理論和實踐表明,長度為l的導體,以速度v在此感應強度為B的勻強磁場中做切割磁感應線運動時,在B、L、v互相垂直的情況下導體中產生的感應電動勢的大小為:ε=BLv
式中的單位均應採用國際單位制,即伏特、特斯拉、米每秒。
電磁感應現象中產生的電動勢。常用符號E表示。當穿過某一不閉合線圈的磁通量發生變化時,線圈中雖無感應電流,但感應電動勢依舊存在。當一段導體在勻強磁場中做勻速切割磁感線運動時,不論電路是否閉合,感應電動勢的大小隻與磁感應強度B、導體長度L、切割速度v及v和B方向間夾角θ的正弦值成正比,即E=BLvsinθ(θ為B,L,v三者間通過互相轉化兩兩垂直所得的角)。
在導體棒不切割磁感線時,但閉合迴路中有磁通量變化時,同樣能產生感應電流。
套用楞次定律可以判斷電流方向。

重要意義

法拉第的實驗表明,不論用什麼方法,只要穿過閉合電路的磁通量發生變化,閉合電路中就有電流產生。這種現象稱為電磁感應現象,所產生的電流稱為感應電流。
法拉第根據大量實驗事實總結出了如下定律:
電路中感應電動勢的大小,跟穿過這一電路的磁通變化率成正比。
感應電動勢用ε表示,即ε=nΔΦ/Δt
這就是法拉第電磁感應定律。
電磁感應現象是電磁學中最重大的發現之一,它揭示了電、磁現象之間的相互聯繫。法拉第電磁感應定律的重要意義在於,一方面,依據電磁感應的原理,人們製造出了發電機,電能的大規模生產和遠距離輸送成為可能;另一方面,電磁感應現象在電工技術、電子技術以及電磁測量等方面都有廣泛的套用。人類社會從此邁進了電氣化時代。

方程

本節是一段題外話,作用是區分本條目中的“法拉第定律”及麥克斯韋方程組中用同一個名字的?×E方程。於本條目中?×E方程會被稱為麥克斯韋-法拉第方程。如果你對此分別不感興趣的話,可略過本節。
麥克斯韋於1855年開發出法拉第定律的鏇度版本,而賀維塞得則於1884年將定律重寫成鏇度方程:
其中
E和B為電場及磁場?×代表的是鏇度?代表的是當方位矢量r不變時的時間偏導數。方程的意義是,如果電場的空間依賴在頁面上成逆時針方向(經右手定律,得鏇度矢量會從頁面指出),那么磁場會因時間而更少指出頁面,更多地指向頁面(跟鏇度矢量異號)。方程跟磁場的變數有關係。故磁場不一定要指向頁面,只需向該方向轉動即可。
本方程(在本條目中被稱為麥克斯韋-法拉第方程)最著名的地方在於它是麥克斯韋方程組中的四條方程之一。
在麥克斯韋-法拉第方程中,亥維賽用的是時間偏導數。不使用麥克斯韋用過的時間全導數,而使用時間偏導數,這樣做使得麥克斯韋-法拉第方程不能說明運動電動勢。然而,麥克斯韋-法拉第方程很多時候會被直接稱為“法拉第定律”。
在本條目中“法拉第定律”一詞指的是通量方程,而“麥克斯韋-法拉第方程”指的則是亥維賽的鏇度方程,也就是現在的麥克斯韋方程組中的那一條。
實際上電磁感應由能量附著而產生的。

成立條件

概括的說,本定律要以公認的形式成立,則必有一個條件:磁單極子不存在。

套用

發電機
主條目:發電機
由法拉第電磁感應定律因電路及磁場的相對運動所造成的電動勢,是發電機背後的根本現象。當永久性磁鐵相對於一導電體運動時(反之亦然),就會產生電動勢。如果電線這時連著電負載的話,電流就會流動,並因此產生電能,把機械運動的能量轉變成電能。例如,基於圖四的鼓輪發電機。另一種實現這種構想的發電機就是法拉第碟片,簡化版本見圖八。注意使用圖五的分析,或直接用洛倫茲力定律,都能得出使用實心導電碟片運作不變的這一結果。
在法拉第碟片這一例子中,碟片在與碟片垂直的均勻磁場中運動,導致一電流因洛倫茲力流到向外的軸臂里。明白機械運動是如何成為驅動電流的必需品,是很有趣的一件事。當生成的電流通過導電的邊沿時,這電流會經由安培環路定理生成出一磁場(圖八中標示為“Induced
B”)。因此邊沿成了抵抗轉動的電磁鐵(楞次定律一例)。在圖的右邊,經轉動中軸臂返回的電流,通過右邊沿到達底部的電刷。此一返回電流所感應的磁場會抵抗外加的磁場,它有減少通過電路那邊通量的傾向,以此增加鏇轉帶來的通量。因此在圖的左邊,經轉動中軸臂返回的電流,通過左邊沿到達底部的電刷。感應磁場會增加電路這邊的通量,減少鏇轉帶來的通量。所以,電路兩邊都生成出抵抗轉動的電動勢。儘管有反作用力,需要保持碟片轉動的能量,正等於所產生的電能(加上由於摩擦、焦耳熱及其他消耗所浪費的能量)。所有把機械能轉化成電能的發電機都會有這種特性。
雖然法拉第定律經常描述發電機的運作原理,但是運作的機理可以隨個案而變。當磁鐵繞著靜止的導電體鏇轉時,變化中的磁場生成電場,就像麥克斯韋-法拉第方程描述的那樣,而電場就會通過電線推著電荷行進。這個案叫感應電動勢。另一方面,當磁鐵靜止,而導電體運動時,運動中的電荷的受到一股磁力(像洛倫茲力定律所描述的那樣),而這磁力會通過電線推著電荷行進。這個案叫動生電動勢。(更多有關感應電動勢、動生電動勢、法拉第定律及洛倫茲力的細節,可見上例或格里夫斯一書。)
電動機
主條目:電動機
發電機可以“反過來”運作,成為電動機。例如,用法拉第碟片這例子,設一直流電流由電壓驅動,通過導電軸臂。然後由洛倫茲力定律可知,行進中的電荷受到磁場B的力,而這股力會按佛來明左手定則訂下的方向來轉動碟片。在沒有不可逆效應(如摩擦或焦耳熱)的情況下,碟片的轉動速率必需使得dΦB/dt等於驅動電流的電壓。
變壓器
主條目:變壓器
法拉第定律所預測的電動勢,同時也是變壓器的運作原理。當線圈中的電流轉變時,轉變中的電流生成一轉變中的磁場。在磁場作用範圍中的第二條電線,會感受到磁場的轉變,於是自身的耦合磁通量也會轉變(dΦB/dt)。因此,第二個線圈內會有電動勢,這電動勢被稱為感應電動勢或變壓器電動勢。如果線圈的兩端是連線著一個電負載的話,電流就會流動。
電磁流量計
法拉第定律可被用於量度導電液體或電漿狀物的流動。這樣一個儀器被稱為電磁流量計。在磁場B中因導電液以速率為v的速度移動,所生成的感應電壓ε可由以下公式求出:
其中ℓ為電磁流量計中電極間的距離。

相關詞條

相關搜尋

熱門詞條

聯絡我們