活化能

活化能

活化能,是非活化分子轉變為活化分子所須吸收的能量。溫度對化學反應速率的顯著影響,有許多經驗的說法。例如,溫度每升高10℃,化學反應速率增加2~3倍即其中之一。

基本信息

英文

活化能(activationenergy)
英文解釋:ActivationEnergy:Evenchemicalreactionsthatreleaseenergydonotalwaysoccurspontaneously.That'sgoodthingbecauseiftheydid,thepagesofthisbookmightburstintoflames.Thecelluloseinpaperburnsinthepresenceofoxygenandreleasesheatandlight.However,thecellulosewillburnonlyifyoulightitwithamatch,whichsuppliesenoughenergytogetthereactionstarted.Chemistscalltheenergythatisneededtogetareactionstartedtheactivationenergy

定義

活化能是指化學反應中,由反應物分子到達活化分子所需的最小能量 以酶和底物為例,二者自由狀態下的勢能與二者相結合形成的活化分子的勢能之差就是反應所需的活化能,因此不是說活化能存在於細胞中,而是細胞中的某些能量為反應提供了所需的活化能。
化學反應速率與其活化能的大小密切相關,活化能越低,反應速率越快,因此降低活化能會有效地促進反應的進行。通過降低活化能(實際上是通過改變反應途徑的方式降低活化能)來促進一些原本很慢的生化反應得以快速進行。

化學反應

化學
活化能活化能
反應的活化能
實驗證明,只有發生碰撞的分子的能量等於或超過某一定的能量Ec(可稱為臨界能)時,才可能發生有效碰撞。具有能量大於或等於Ec的分子稱為活化分子。
在一定溫度下,將具有一定能量的分子百分數對分子能量作圖,如圖1所示。從圖1可以看出,原則上來說,反應物分子的能量可以從0到∞,但是具有很低能量和很高能量的分子都很少,具有平均能量Ea的分子數相當多。這種具有不同能量的分子數和能量大小的對應關係圖,叫做一定溫度下分子能量分布曲線圖。
圖1中,Ea表示分子的平均能量,Ec是活化分子具有的最低能量,能量等於或高於Ec的分子可能產生有效碰撞。活化分子具有的最低能量Ec與分子的平均能量Ea之差叫活化能
不同的反應具有不同的活化能。反應的活化能越低,則在指定溫度下活化分子數越多,反應就越快。
不同溫度下分子能量分布是不同的。圖2是不同溫度下分子的能量分布示意圖。當溫度升高時,氣體分子的運動速率增大,不僅使氣體分子在單位時間內碰撞的次數增加,更重要的是由於氣體分子能量增加,使活化分子百分數增大。圖2中曲線t1表示在t1溫度下的分子能量分布,曲線t2表示在t2溫度下的分子能量分布(t2>t1)。溫度為t1時活化分子的多少可由面積A1反映出來;溫度為t2時,活化分子的多少可由面積A1+A2反映出來。從圖中可以看到,升高溫度,可以使活化分子百分數增大,從而使反應速率增大。

定律

阿倫尼烏斯公式

非活
活化能活化能
化分子轉變為活化分子所需吸收的能量為活化能的計算可用阿倫尼烏斯方程求解。阿倫尼烏斯方程反應了化學反應速率常數K隨溫度變化的關係。在多數情況下,其定量規律可由阿倫尼烏斯公式來描述:
K=Aexp(-Ea/RT)(1)式中:κ為反應的速率系(常)數;Ea和A分別稱為活化能和指前因子,是化學動力學中極重要的兩個參數;R為摩爾氣體常數;T為熱力學溫度。(1)式還可以寫成:
lnκ=lnA-Ea/RT(2)lnκ=與-1/T為直線關係,直線斜率為-Ea/R,截距為lnA,由實驗測出不同溫度下的κ值,並將lnκ對1/T作圖,即可求出E值。例:由Ea計算反應速率係數k
當已知某溫度下的k和Ea,可根據Arrhenius計算另一溫度下的k,或者與另一k相對應的溫度T。
2N2O5(g)=2N2O4(g)+O2(g)
已知:T1=298.15K,k1=0.469×10s
T2=318.15K,k2=6.29×10s求:Ea及338.15K時的k3。
Ea=[RT1T2(lnk2/k1)]/(T2-T1)=102kj/mol
lnk3/k1=Ea[(1/T1)-(1/T3)]/R
K3=6.12/1000S
對於更為複雜的描述κ與T的關係式中,活化能E定義為:E=RT2(dlnκ/dT)

活化能

在元反應中,並不是反應物分子的每一次碰撞都能發生反應。S.A.阿倫尼烏斯認為,只有“活化分子”之間的碰撞才能發生反應,而活化分子的平均能量與反應物分子平均能量的差值即為活化能。近代反應速率理論進一步指出,兩個分子發生反應時必須經過一個過渡態——活化絡合物,過渡態具有比反應物分子和產物分子都要高的勢能,互撞的反應物分子必須具有較高的能量足以克服反應勢能壘,才能形成過渡態而發生反應,此即活化能的本質
對於複合反應,由上述實驗方法求出的E值只是表觀值,沒有實際的物理意義。

意義

阿侖尼烏斯(S.A.Arrhenius)發現化學反應的速度常數k和絕對溫度T之間有d(lnk)/dt=E/RT2的關係。這裡的E就是活化能。假若把上式積分得到lnk=lnA-(E/RT),從這個公式可知,在各種溫度下求得k值,把lnk對1/T作圖(這圖稱為阿侖尼烏斯圖)就得到直線,由於直線的斜率是-E/R,因而可求得E值。活化能的物理意義一般認為是這樣:從原反應體系到產物的中間階段存在一個過渡狀態,這個過渡狀態和原系統的能量差就是活化能E,而且熱能RT如不大於E,反應就不能進行。也就是原系統和生成物系統之間存在著能壘,其高度相當於活化能。其後埃林(H.Eyring)從過渡狀態(也叫做活性絡合物)和原系統之間存在著近似的平衡出發,對速度常數k導出了如下的關係:k=k(KT/h)exp(-ΔG*/RT)=k(KT/h)exp(ΔS*/R)exp(-ΔH*/RT)k為通透係數,K是波爾茲曼常數,h是普朗克常數,ΔG*、ΔS*、ΔH*分別為活化自由能、活化熵和活化焓。而且活化自由能與活化焓大致相等。酶促反應主要就是由於降低了活化自由能

酶相關名詞

| 酶動力學 | 催化常數 | 酵素梅 | 競爭性抑制 | 非特異性抑制劑 | 酶多重性 | 多酶體系 | 開特 | 全酶 | 米氏常數 | 酶催化機制 | 催化部位 | 非競爭性抑制 | 抑制結構域 | 酶多態性 | 多酶複合物 | 活化能 | 米氏方程 | 鎖鑰學說 | 催化亞基 | 反競爭性抑制 | 協同催化 | 酶解作用 | 活性部位 | 同工酶 | 米氏動力學 | 誘導契合學說 | 不可逆抑制 | 非特異性抑制 | 協作抑制 |酶複合物| 酶活性 | 最適pH | 酶原 | 雙倒數作圖法 | 催化活性 | 可逆抑制 | 競爭性抑制劑 | 反饋抑制 | 酶系 | 酶單位 | 最適溫度

相關搜尋

熱門詞條

聯絡我們