
方程形式
方程的形式為
這裡
,並且有
這個方程的導出來自愛因斯坦引力場方程在一個廣義的定態且球對稱度規(不一定是史瓦西度規)條件下的解,具體討論的導出過程可參考這裡。這裡簡單敘述為,對於一個滿足托爾曼-奧本海默-沃爾科夫方程的解,度規具有如下形式

其中

當系統的狀態方程(EOS,它建立了密度與壓力的關係)
確定後,托爾曼-奧本海默-沃爾科夫方程能夠完全決定這個球對稱且各向同性的系統在引力平衡狀態下的結構。注意到如果如果這個方程被用來描述一個真空中的束縛星體,在邊界上需要套用零壓力條件
以及條件
。第二個邊界條件是因為度規在邊界上需要連續,並且對真空中的愛因斯坦方程具有唯一的定態球對稱解——史瓦西度規:
這裡

但從另一方面看,如果考慮系統的引力場作用下的度規,將星體的密度在對應的體元下積分,將得到一個更大的質量函式

這兩個質量的差別為

這個值是大於零的,體現了星體因引力作用產生的束縛能量,也就是將星體內部的物質打散後拋到無限遠處所要消耗的能量。
歷史
托爾曼(Richard C. Tolman)在1934年和1939年間分析了球對稱度規而這個方程的形式則是由奧本海默和沃爾科夫(George Volkoff)藉助托爾曼的工作在他們1939年的論文《在巨大的中子核上》中推導出的。在這篇論文中,他們採用了一個中子組成的簡併費米氣體模型的狀態方程來計算中子星質量的上限,其結果約為0.7倍太陽質量。由於他們所用的狀態方程對中子星而言並不理想,這個得到的極限應該是錯誤的,現代對這一極限的估計為1.5至3倍太陽質量。托爾曼-奧本海默-沃爾科夫極限
白矮星-內部結構模型圖
中子星-內部結構模型圖 一個由恆星坍縮成的黑洞必須具有大於托爾曼-奧本海默-沃爾科夫極限的質量。理論預言由於恆星演化中的質量損失,一個具有太陽那樣金屬量的孤立恆星坍縮而成的黑洞應該具有不超過10倍左右的太陽質量。在錢德拉X射線天文台的實驗觀測中,有相當數量的X射線雙星由於它們的巨大質量、較低的亮度以及X射線光譜被認為是恆星質量黑洞,它們的質量據估計在3倍至20倍太陽質量之間 。
夸克星-內部結構模型圖 