圖論

圖論

圖論〔Graph Theory〕是數學的一個分支。它以圖為研究對象。圖論中的圖是由若干給定的點及連線兩點的線所構成的圖形,這種圖形通常用來描述某些事物之間的某種特定關係,用點代表事物,用連線兩點的線表示相應兩個事物間具有這種關係。一些由結點及邊構成的圖稱為線圖。線上圖中,結點的位置分布和邊的長短曲直都可以任意描畫,這並不改變實際問題的性質。我們關心的是它有多少個結點,在哪些結點間有邊相連,以及整個線圖具有的某些特性。

基本信息

概述

圖論圖論
圖G=(V,E)是一個二元組(V,E)使得E⊆[V]的平方,所以E的元素是V的2-元子集。為了避免符號上的混淆,我們總是默認V∩B=Ø。集合V中的元素稱為圖G的定點(或節點、點),而集合E的元素稱為邊(或線)。通常,描繪一個圖的方法是把定點畫成一個小圓圈,如果相應的頂點之間有一條邊,就用一條線連線這兩個小圓圈,如何繪製這些小圓圈和連線時無關緊要的,重要的是要正確體現哪些頂點對之間有邊,哪些頂點對之間沒有邊。
圖論本身是套用數學的一部份,因此,歷史上圖論曾經被好多位數學家各自獨立地建立過。關於圖論的文字記載最早出現在歐拉1736年的論著中,他所考慮的原始問題有很強的實際背景。

起源

眾所周知,圖論起源於一個非常經典的問題——柯尼斯堡(Konigsberg)問題。
1738年,瑞典數學家歐拉(LeornhardEuler)解決了柯尼斯堡問題。由此圖論誕生。歐拉也成為圖論的創始人。
1859年,英國數學家漢密爾頓發明了一種遊戲:用一個規則的實心十二面體,它的20個頂點標出世界著名的20個城市,要求遊戲者找一條沿著各邊通過每個頂點剛好一次的閉迴路,即“繞行世界”。用圖論的語言來說,遊戲的目的是在十二面體的圖中找出一個生成圈。這個生成圈後來被稱為漢密爾頓迴路。這個問題後來就叫做漢密爾頓問題。由於運籌學、計算機科學和編碼理論中的很多問題都可以化為漢密爾頓問題,從而引起廣泛的注意和研究。

猜想

圖論圖論
在圖論的歷史中,還有一個最著名的問題--四色猜想。這個猜想說,在一個平面或球面上的任何地圖能夠只用四種顏色來著色,使得沒有兩個相鄰的國家有相同的顏色。每個國家必須由一個單連通域構成,而兩個國家相鄰是指它們有一段公共的邊界,而不僅僅只有一個公共點。這一問題最早於1852年由FrancisGuthrie提出,最早的文字記載則現於德摩根於同一年寫給哈密頓的信上。包括凱萊、肯普等在內的許多人都曾給出過錯誤的證明。泰特(Tait)、希伍德(Heawood)、拉姆齊和哈德維格(Hadwiger)對此問題的研究與推廣引發了對嵌入具有不同虧格的曲面的圖的著色問題的研究。一百多年後,四色問題仍未解決。1969年,HeinrichHeesch發表了一個用計算機解決此問題的方法。1976年,阿佩爾(Appel)和哈肯(Haken)藉助計算機給出了一個證明,此方法按某些性質將所有地圖分為1936類並利用計算機,運行了1200個小時,驗正了它們可以用四種顏色染色。四色定理是第一個主要由電腦證明的理論,這一證明並不被所有的數學家接受,因為採用的方法不能由人工直接驗證。最終,人們必須對電腦編譯的正確性以及運行這一程式的硬體設備充分信任。主要是因為此證明缺乏數學應有的規範,以至於有人這樣評論“一個好的數學證明應當像一首詩——而這純粹是一本電話簿!”
雖然四色定理證明了任何地圖可以只用四個顏色著色,但是這個結論對於現實上的套用卻相當有限。現實中的地圖常會出現飛地,即兩個不連通的區域屬於同一個國家的情況(例如美國的阿拉斯加州),而製作地圖時我們仍會要求這兩個區域被塗上同樣的顏色,在這種情況下,四個顏色將會是不夠用的。
20世紀80-90年代曾邦哲的綜合系統論(結構論)觀將“四色猜想”命題轉換等價為“互鄰面最大的多面體是四面體”。每個地圖可以導出一個圖,其中國家都是點,當相應的兩個國家相鄰時這兩個點用一條線來連線。所以四色猜想是圖論中的一個問題。它對圖的著色理論、平面圖理論、代數拓撲圖論等分支的發展起到推動作用。
(下圖是在上下對摺再左右對摺以後形成一個輪胎形狀,有7個區域兩兩相連,就是說在一個環面上作圖,需要7種顏色,外國數學家構造林格證明:Np=[(7+√1+48p)/2],p=1,N1=7。
圖論的廣泛套用,促進了它自身的發展。20世紀40-60年代,擬陣理論、超圖理論、極圖理論,以及代數圖論、拓撲圖論等都有很大的發展。

拓撲學

幾何拓撲學是十九世紀形成的一門數學分支,它屬於幾何學的範疇。有關拓撲學的一些內容早在十八世紀就出現了。那時候發現一些孤立的問題,後來在拓撲學的形成中占著重要的地位。
在數學上,關於哥尼斯堡七橋問題、多面體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。
哥尼斯堡(今俄羅斯加里寧格勒)是東普魯士的首都,普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閒暇時經常在這上邊散步,一天有人提出:能不能每座橋都只走一遍,最後又回到原來的位置。這個問題看起來很簡單有很有趣的問題吸引了大家,很多人在嘗試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那么容易。
1736年,有人帶著這個問題找到了當時的大數學家歐拉,歐拉經過一番思考,很快就用一種獨特的方法給出了解答。歐拉把這個問題首先簡化,他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那么這個問題就簡化成,能不能用一筆就把這個圖形畫出來。經過進一步的分析,歐拉得出結論--不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的“先聲”。
在拓撲學的發展歷史中,還有一個著名而且重要的關於多面體的定理也和歐拉有關。這個定理內容是:如果一個凸多面體的頂點數是v、棱數是e、面數是f,那么它們總有這樣的關係:f+v-e=2。
根據多面體的歐拉定理,可以得出這樣一個有趣的事實:只存在五種正多面體。它們是正四面體、正六面體、正八面體、正十二面體、正二十面體。

相關詞條

相關搜尋

熱門詞條

聯絡我們