狹義和廣義相對論淺說

狹義和廣義相對論淺說

《狹義與廣義相對論淺說》是物理學科中的重要經典著作之一,也是愛因斯坦親自對他的相對論所做的大眾化解釋。它是人類科學史上一部劃時代的著作,它提出了一套嶄新的科學理論,引起了科學史上的偉大變革,對整個人類思想的發展都產生了巨大的深遠的影響。愛因斯坦在這本書中深刻地揭示了時間和空間的本質屬性,論證了時間和空間的內在聯繫和統一性;同時也發展和改造了牛頓力學,使之適用於更廣闊範圍的力學現象,揭示了質量和能量之間的內在聯繫,以及力學和電磁學的統一性,對引力提出了全新的解釋,回答並解決了時間和空間的對稱性問題,使人們對世界的研究發展了一個新的階段。它是20世紀最偉大的科學理論,改變了人們對宇宙的認識。

基本信息

編輯推薦

(圖)狹義和廣義相對論淺說狹義和廣義相對論淺說

相對論作為物理學的重要組成部分,是近代物理學的兩大支柱這一。它的創立者愛因斯坦是一位享有盛譽的科學家。那么,相對論是一種什麼樣的理論?愛因基坦又是怎樣的人呢?

本書是愛因斯坦豐富博大的科學成果中一部比較淺顯的著述。通過此書,可使讀者對相以論有初步的接觸,從而打下一定烙印,受到一些啟迪。這是一種對神秘宮殿的初步探求,也是一種對制高點的初步領略。相信,走近愛因斯坦,了解相對論,對於知識結構的調整,思維方法的啟迪,科學精神的激發,都會大有裨益。

“你和一個漂亮姑娘在公園長椅上坐一小時,覺得只過了一分鐘;你緊挨著一個火爐坐一分鐘,卻覺得過了一小時。這就是相對論。”

愛因斯坦常常這樣向媒體和公眾開玩笑。相對論為什麼會受到如此狂熱追捧?連愛因斯坦本人也覺得不可思議!

科學元典是科學史和人類文明史上劃時代的豐碑,是人類文化的優秀遺產,是歷經時間考驗的不朽之作,它們不僅是科學創造的結晶,而且是科學精神、科學思想和科學方法的載體,具有永恆的意義和價值。讓我們一起仰望先賢,回眸歷史,體悟原汁原味的科學發現。

作者介紹

(圖)愛因斯坦愛因斯坦

作者阿爾伯特·愛因斯坦(Albert Einstein,1879年3月14日-1955年4月18日),舉世聞名的美國科學家,為猶太人現代物理學的開創者和奠基人,相對論——“質能關係”的提出者,“決定論量子力學詮釋”的捍衛者(振動的粒子)——不擲骰子的上帝。 1999年12月26日,愛因斯坦被美國《時代》周刊評選為“世紀偉人。”

愛因斯坦1900年畢業於蘇黎世工業大學,併入瑞士國籍。1905年獲蘇黎世大學哲學博士學位。曾在伯爾尼專利局任職。蘇黎世工業大學、布拉格德意志大學教授。1913年返德國,任柏林威廉皇帝物理研究所所長和柏林大學教授,並當選為普魯士科學院院士。1933年因受納粹政權迫害,遷居美國,任普林斯頓高級研究所教授,從事理論物理研究,1940年入美國國籍。

(圖)狹義和廣義相對論淺說狹義和廣義相對論淺說

十九世紀末期是物理學的大變革時期,愛因斯坦從實驗事實出發,重新考查了物理學的基本概念,在理論上作出了根本性的突破。他的一些成就大大推動了天文學的發展。他的量子理論對天體物理學、特別是理論天體物理學都有很大的影響。理論天體物理學的第一個成熟的方面——恆星大氣理論,就是在量子理論和輻射理論的基礎上建立起來的。愛因斯坦的狹義相對論成功地揭示了能量與質量之間的關係,堅守著“上帝不擲骰子”的量子論詮釋(微粒子振動與平動的矢量和)的決定論陣地,解決了長期存在的恆星能源來源的難題。近年來發現越來越多的高能物理現象,狹義相對論已成為解釋這種現象的一種最基本的理論工具。其廣義相對論也解決了一個天文學上多年的不解之謎,並推斷出後來被驗證了的光線彎曲現象,還成為後來許多天文概念的理論基礎。

愛因斯坦對天文學最大的貢獻莫過於他的宇宙學理論。他創立了相對論宇宙學,建立了靜態有限無邊的自洽的動力學宇宙模型,並引進了宇宙學原理、彎曲空間等新概念,大大推動了現代天文學的發展。

《狹義和廣義相對論淺說》成書時間為1916年。它是20世紀最偉大的科學理論,改變了人們對宇宙的認識。

愛因斯坦的主要著作有《相對論的意義》(1923年)、《布朗運動理論研究》(1926年)、《宇宙的建造者》(1932年)、《理論物理學方法》(1933年)、《物理學的進化》(與利奧波爾德·英菲爾德合著,1938年)等。

創作背景

(圖)狹義和廣義相對論淺說狹義和廣義相對論淺說

愛因斯坦是理論物理學家、數學家,相對論的創始人。他於1879年3月14日出生於德國的烏爾姆城的一個猶太家庭。愛因斯坦受家庭的影響,從小對德國的啟蒙思想非常感興趣,而對當時流行的軍國主義教育很不以為然,他在中學期間就閱讀了大量的科學書籍。1895年,愛因斯坦就讀於瑞士蘇黎世聯邦工業大學。1900年畢業後,愛因斯坦並沒有馬上找到工作,兩年後他才在伯爾尼的瑞士專利局做過7年的技術審查員。

愛因斯坦於1905年提出了相對論的思想,發表了狹義相對論、光電效應和布朗運動等方面的論文。這些論文,特別是狹義相對論那篇,在幾年之內就使他享有世界上最傑出、最富有創造性的科學家的盛名。

1915年又提出了廣義相對論原理。愛因斯坦的相對論思想發表並在1919年得到證實以後,他獲得了極大的聲譽。1921年他獲得諾貝爾獎。

作品縮寫

(圖)狹義和廣義相對論淺說狹義和廣義相對論淺說

愛因斯坦作為一個著名的科學家,不僅創造了深奧的相對論理論,而且試圖把這種深奧的科學理論讓更多的人了解,於是他寫作了《狹義與廣義相對論淺說》。這本書分為兩部分:《狹義相對論》(1905年發表),《廣義相對論》(1915年發表)。《狹義與廣義相對論淺說》是物理學科中的重要經典著作之一,也是愛因斯坦親自對他的相對論所做的大眾化解釋。

愛因斯坦根據自然科學和幾何學發展狀況,批判了歐幾里得幾何,接受和運用了非歐幾何,並運用非歐幾何來建立和論證他的相對論理論。

狹義相對論有兩個基本原理:第一個原理是相對性原理,即物理學定律在所有慣性系中是相同的,不存在一種特殊的慣性系。時間與空間觀念都具有相對性。一個觀察者看來是同時發生的事件,另一個向他做相對運動的觀察者看來便不是同時發生的。兩個這樣的觀察者對兩個事件之間的時間間隔的估計將會不一致,同時他們對距離的衡量也會不一致。假定兩個相對勻速運動的觀察者所得到的光速相同,那么只要他們對時間與空間運用不同的量度,就能對於現象得到相同的自然規律,並能精確地說明這種差別有多少。換句話說,每個觀察者都有自己一套時間——空間的框架,對於一切觀察者全都相同的絕對空間時間是不存在的。

第二個原理是光速不變原理,即在所有的慣性系中,真空中光的速度具有相同的值。假定一個觀察者B帶著一把碼尺和一隻座鐘,並把碼尺指向他運動的方向。當他向觀察者A旁邊走過時,在A看來他的尺子不足一碼長,他的鐘也慢了。B相對於A的速度愈大,這差額也就愈大。假如B用光速在A的旁邊通過,我們得到的結果是驚人的,這時B的碼尺長度將等於0,他的鐘也完全不走了。這就是說光速是速度的極限,宇宙間沒有任何東西能以大於光速的速度運動。運動尺子的縮短和運動時鐘的變慢效應,都是相對論時空的基本屬性,與物體內部結構無關。如果物體速度比光速小得多,相對論力學就可解釋牛頓力學。

在相對論之前,物理學中承認兩條極重要的守恆定律,一條是能量守恆定律,一條是質量守恆定律,兩條基本定律似乎彼此獨立。但通過相對論它們便可結合成一條定律,質量和能量可以變成互換的項目。一個物體如果放射出能量就會損失質量,如果接受能量就會增加質量,當一物體加快運動時,它的能量和質量都會增加,在光速的情況下,它的質量將變成無窮大。這個質量與能量的關係可以通過數學上推導,寫成一個表達式:E=mc2(E為能量,m為質量,c為光速)。

廣義相對論實質上是一種引力理論,在有引力場的區域,空間的性質不再服從歐幾里得幾何,而遵循著非歐幾何。比如19世紀德國數學家黎曼所建立的黎曼幾何學就是非歐幾何學的一種,它描寫了非平直空間的性質。愛因斯坦最終選擇了黎曼的嚴格非歐幾何作為廣義相對論的時空模型。他認為,現實的物質空間不是平直的歐幾里得空間,而是彎曲的黎曼空間。空間的彎曲程度取決於物質的質量及其在空間的幾何分布情況。物質密度大的地方,則引力場的強度也大,時空就彎曲得厲害。所以把絕對真空看作一個物理實體是毫無意義的。很顯然,廣義相對論所揭示的物質同時空的關係,比起狹義相對論來更為深刻。因為時空的性質不僅取決於物質的運動,而且更重要的是取決於物質本身的分布。這就從新的高度徹底否定了牛頓的絕對時空觀。

廣義相對論把幾何學與物理學統一起來,用空間結構的幾何性質來表述引力場。它同牛頓的引力論有本質的不同,但在日常人們接觸到的現象中卻分辨不出兩者結果的差異。愛因斯坦提供了三個可供實驗驗證的推論。第一是水星軌道近日點的進動。第二,光線在引力場中的偏轉。第三,在強引力場中,時鐘要走得慢些,因此從巨大質量的星體表面射到地球上的光的譜線,必定顯得要向光譜的紅端移動。這在1925年得到觀測驗證。

歷史意義及貢獻

(圖)印證相對論印證相對論

1905年,一位供職於瑞士國家專利局、名叫愛因斯坦的26歲德國人,在德國科學雜誌《物理年報》上連續發表了三篇論文。其中《論運動物體的電動力學》,提出了根本有別於傳統觀念的空間、時間理論,而在當時,它只在德國引起了一些反響,並沒有得到其他絕大多數物理學家的注意。今天,人們評價說,這3篇論文代表了世界理論物理學方面最重要的成就,即使作者此前從未寫過一個字,僅憑這三篇文章也足以成為偉人。愛因斯坦成了“天才”的代名詞。

愛因斯坦一改以往人們頭腦中的觀念,論證了時間和空間是相對的,只有獨立於觀察者之外的光速是個常數。愛因斯坦證明,當物體的速度接近光速時,其長度就會減小,質量就會增加,時間就會放慢。由此推論,假如物體的速度與光的速度相同時,其長度為0,質量不會再增加,而且時間也就停止了。愛因斯坦根據這種不可能性得出了一個結論:任何物體都不會以光速和超過光速運動。這項被稱為“相對論”的理論彌補了牛頓物理學長達兩個世紀的不足,愛因斯坦將時間與空間相結合,創立了新的四維宇宙空間的學說。

相對論徹底改變了人們對時空觀的認知,帶來了整個物理學的革命。然而對大多數人來說,理解這樣的一套理論體系還是頗費一番腦筋的。愛因斯坦為了讓更多的人了解相對論的思想,樂於寫普及大眾的讀物來介紹這20世紀最偉大的科學發現之一。他專門寫了《狹義與廣義相對論淺說》這本小冊子,文章很少涉及到數學和科學引證,邏輯性自然而完美,人們驚嘆:“好像有誰已經給作者看過宇宙的運行過程,而他只是把所看到的記錄下來而已。”愛因斯坦顯然十分喜歡這項工作,不斷地修訂再版,直到他去世前3年,即1952年,這本書已經出到了它的第15版。

愛因斯坦的《狹義與廣義相對論淺說》是人類科學史上一部劃時代的著作,它提出了一套嶄新的科學理論,引起了科學史上的偉大變革,對整個人類思想的發展都產生了巨大的深遠的影響。愛因斯坦在這本書中深刻地揭示了時間和空間的本質屬性,論證了時間和空間的內在聯繫和統一性;同時也發展和改造了牛頓力學,使之適用於更廣闊範圍的力學現象,揭示了質量和能量之間的內在聯繫,以及力學和電磁學的統一性,對引力提出了全新的解釋,回答並解決了時間和空間的對稱性問題,使人們對世界的研究發展了一個新的階段。

曾任英國皇家學會會長的湯姆森1919年說:愛因斯坦的理論是“人類思想史中最偉大的成就之一”,“它不是發現一個外圍的島嶼,而是發現整個科學新思想的大陸”。物理學家狄拉克認為愛因斯坦的引力理論“大概是人類已經做出的最偉大的科學發現”。

相對論不僅引起了時空觀的革命,也帶來了整個物理學的革命,產生了深遠的影響。其中最突出的,是關於物體的質量和能量相對性的推論,即E=mc2。這為以後核子彈的製造、核能的和平利用打下了理論基礎。

用愛因斯坦的話來說,他的一生躊躇於政治和方程式之間。作為一個和平愛好者,他當然能夠預見核子彈的巨大威力,一度反對在自己理論的基礎上發展核武器。但是當他見到納粹的暴行時,他放棄了自己原先的想法,在1939年致函羅斯福總統,指出了製造核子彈武器的可能性,強調了美國搶在德國前面造出這種武器的重要意義。就是這封信促進了曼哈頓工程的建立,導致了第一顆核子彈的發射。連愛因斯坦自己也沒有想過,自己腦袋中思考的理論,有一天會產生如此巨大的威力。

作為一個猶太人,他於1952年聲明支持猶太復國主義運動以色列建國時,曾邀請他出任總理,愛因斯坦拒絕了,他認為自己在政治上太天真。也許其真正的原因卻並非如此,還是聽一聽他曾經說過的話:“方程對我而言更重要些,因為政治是為當前,而一個方程卻是一種永恆的東西。”

狹義相對論的創立

早在16歲時,愛因斯坦就從書本上了解到光是以很快速度前進的電磁波,他產生了一個想法,如果一個人以光的速度運動,他將看到一幅什麼樣的世界景象呢?他將看不到前進的光,只能看到在空間裡振盪著卻停滯不前的電磁場。這種事可能發生嗎?

(圖)狹義和廣義相對論淺說狹義相對論

與此相聯繫,他非常想探討與光波有關的所謂以太的問題。以太這個名詞源於希臘,用以代表組成天上物體的基本元素。17世紀,笛卡爾首次將它引入科學,作為傳播光的媒質。其後,惠更斯進一步發展了以太學說,認為荷載光波的媒介物是以太,它應該充滿包括真空在內的全部空間,並能滲透到通常的物質中。與惠更斯的看法不同,牛頓提出了光的微粒說。牛頓認為,發光體發射出的是以直線運動的微粒粒子流,粒子流衝擊視網膜就引起視覺。18世紀牛頓的微粒說占了上風,然而到了19世紀,卻是波動說占了絕對優勢,以太的學說也因此大大發展。當時的看法是,波的傳播要依賴於媒質,因為光可以在真空中傳播,傳播光波的媒質是充滿整個空間的以太,也叫光以太。與此同時,電磁學得到了蓬勃發展,經過麥克斯韋、赫茲等人的努力,形成了成熟的電磁現象的動力學理論——電動力學,並從理論與實踐上將光和電磁現象統一起來,認為光就是一定頻率範圍內的電磁波,從而將光的波動理論與電磁理論統一起來。以太不僅是光波的載體,也成了電磁場的載體。直到19世紀末,人們企圖尋找以太,然而從未在實驗中發現以太。

但是,電動力學遇到了一個重大的問題,就是與牛頓力學所遵從的相對性原理不一致。關於相對性原理的思想,早在伽利略和牛頓時期就已經有了。電磁學的發展最初也是納入牛頓力學的框架,但在解釋運動物體的電磁過程時卻遇到了困難。按照麥克斯韋理論,真空中電磁波的速度,也就是光的速度是一個恆量,然而按照牛頓力學的速度加法原理,不同慣性系的光速不同,這就出現了一個問題:適用於力學的相對性原理是否適用於電磁學?例如,有兩輛汽車,一輛向你駛近,一輛駛離。你看到前一輛車的燈光向你靠近,後一輛車的燈光遠離。按照麥克斯韋的理論,這兩種光的速度相同,汽車的速度在其中不起作用。但根據伽利略理論,這兩項的測量結果不同。向你駛來的車將發出的光加速,即前車的光速=光速+車速;而駛離車的光速較慢,因為後車的光速=光速-車速。麥克斯韋與伽利略關於速度的說法明顯相悖。我們如何解決這一分歧呢?

19世紀理論物理學達到了巔峰狀態,但其中也隱含著巨大的危機。海王星的發現顯示出牛頓力學無比強大的理論威力,電磁學與力學的統一使物理學顯示出一種形式上的完整,並被譽為“一座莊嚴雄偉的建築體系和動人心弦的美麗的廟堂”。在人們的心目中,古典物理學已經達到了近乎完美的程度。德國著名的物理學家普朗克年輕時曾向他的老師表示要獻身於理論物理學,老師勸他說:“年輕人,物理學是一門已經完成了的科學,不會再有多大的發展了,將一生獻給這門學科,太可惜了。”

愛因斯坦似乎就是那個將構建嶄新的物理學大廈的人。在伯爾尼專利局的日子裡,愛因斯坦廣泛關注物理學界的前沿動態,在許多問題上深入思考,並形成了自己獨特的見解。在十年的探索過程中,愛因斯坦認真研究了麥克斯韋電磁理論,特別是經過赫茲和洛倫茲發展和闡述的電動力學。愛因斯坦堅信電磁理論是完全正確的,但是有一個問題使他不安,這就是絕對參照系以太的存在。他閱讀了許多著作發現,所有人試圖證明以太存在的試驗都是失敗的。經過研究愛因斯坦發現,除了作為絕對參照系和電磁場的荷載物外,以太在洛倫茲理論中已經沒有實際意義。於是他想到:以及絕對參照系是必要的嗎?電磁場一定要有荷載物嗎?

愛因斯坦喜歡閱讀哲學著作,並從哲學中吸收思想營養,他相信世界的統一性和邏輯的一致性。相對性原理已經在力學中被廣泛證明,但在電動力學中卻無法成立,對於物理學這兩個理論體系在邏輯上的不一致,愛因斯坦提出了懷疑。他認為,相對論原理應該普遍成立,因此電磁理論對於各個慣性系應該具有同樣的形式,但在這裡出現了光速的問題。光速是不變的量還是可變的量,成為相對性原理是否普遍成立的首要問題。當時的物理學家一般都相信以太,也就是相信存在著絕對參照系,這是受到牛頓的絕對空間概念的影響。19世紀末,馬赫在所著的《發展中的力學》中,批判了牛頓的絕對時空觀,這給愛因斯坦留下了深刻的印象。1905年5月的一天,愛因斯坦與一個朋友貝索討論這個已探索了十年的問題,貝索按照馬赫主義的觀點闡述了自己的看法,兩人討論了很久。突然,愛因斯坦領悟到了什麼,回到家經過反覆思考,終於想明白了問題。第二天,他又來到貝索家,說:謝謝你,我的問題解決了。原來愛因斯坦想清楚了一件事:時間沒有絕對的定義,時間與光信號的速度有一種不可分割的聯繫。他找到了開鎖的鑰匙,經過五個星期的努力工作,愛因斯坦把狹義相對論呈現在人們面前。

1905年6月30日,德國《物理學年鑑》接受了愛因斯坦的論文《論動體的電動力學》,在同年9月的該刊上發表。這篇論文是關於狹義相對論的第一篇文章,它包含了狹義相對論的基本思想和基本內容。狹義相對論所根據的是兩條原理:相對性原理和光速不變原理。愛因斯坦解決問題的出發點,是他堅信相對性原理。伽利略最早闡明過相對性原理的思想,但他沒有對時間和空間給出過明確的定義。牛頓建立力學體系時也講了相對性思想,但又定義了絕對空間、絕對時間和絕對運動,在這個問題上他是矛盾的。而愛因斯坦大大發展了相對性原理,在他看來,根本不存在絕對靜止的空間,同樣不存在絕對同一的時間,所有時間和空間都是和運動的物體聯繫在一起的。對於任何一個參照系和坐標系,都只有屬於這個參照系和坐標系的空間和時間。對於一切慣性系,運用該參照系的空間和時間所表達的物理規律,它們的形式都是相同的,這就是相對性原理,嚴格地說是狹義的相對性原理。在這篇文章中,愛因斯坦沒有多討論將光速不變作為基本原理的根據,他提出光速不變是一個大膽的假設,是從電磁理論和相對性原理的要求而提出來的。這篇文章是愛因斯坦多年來思考以太與電動力學問題的結果,他從同時的相對性這一點作為突破口,建立了全新的時間和空間理論,並在新的時空理論基礎上給動體的電動力學以完整的形式,以太不再是必要的,以太漂流是不存在的。

什麼是同時性的相對性?不同地方的兩個事件我們何以知道它是同時發生的呢?一般來說,我們會通過信號來確認。為了得知異地事件的同時性我們就得知道信號的傳遞速度,但如何沒出這一速度呢?我們必須測出兩地的空間距離以及信號傳遞所需的時間,空間距離的測量很簡單,麻煩在於測量時間,我們必須假定兩地各有一隻已經對好了的鐘,從兩個鐘的讀數可以知道信號傳播的時間。但我們如何知道異地的鐘對好了呢?答案是還需要一種信號。這個信號能否將鍾對好?如果按照先前的思路,它又需要一種新信號,這樣無窮後退,異地的同時性實際上無法確認。不過有一點是明確的,同時性必與一種信號相聯繫,否則我們說這兩件事同時發生是沒有意義的。

光信號可能是用來對時鐘最合適的信號,但光速不是無限大,這樣就產生一個新奇的結論,對於靜止的觀察者同時的兩件事,對於運動的觀察者就不是同時的。我們構想一個高速運行的列車,它的速度接近光速。列車通過站台時,甲站在站台上,有兩道閃電在甲眼前閃過,一道在火車前端,一道在後端,並在火車兩端及平台的相應部位留下痕跡,通過測量,甲與列車兩端的間距相等,得出的結論是,甲是同時看到兩道閃電的。因此對甲來說,收到的兩個光信號在同一時間間隔內傳播同樣的距離,並同時到達他所在位置,這兩起事件必然在同一時間發生,它們是同時的。但對於在列車內部正中央的乙,情況則不同,因為乙與高速運行的列車一同運動,因此他會先截取向著他傳播的前端信號,然後收到從後端傳來的光信號。對乙來說,這兩起事件是不同時的。也就是說,同時性不是絕對的,而取決於觀察者的運動狀態。這一結論否定了牛頓力學中引以為基礎的絕對時間和絕對空間框架。

相對論認為,光速在所有慣性參考系中不變,它是物體運動的最大速度。由於相對論效應,運動物體的長度會變短,運動物體的時間膨脹。但由於日常生活中所遇到的問題,運動速度都是很低的(與光速相比),看不出相對論效應。

愛因斯坦在時空觀的徹底變革的基礎上建立了相對論力學,指出質量隨著速度的增加而增加,當速度接近光速時,質量趨於無窮大。他並且給出了著名的質能關係式:E=mc2,質能關係式對後來發展的原子能事業起到了指導作用。

廣義相對論的建立

1905年,愛因斯坦發表了關於狹義相對論的第一篇文章後,並沒有立即引起很大的反響。但是德國物理學的權威人士普朗克注意到了他的文章,認為愛因斯坦的工作可以與哥白尼相媲美,正是由於普朗克的推動,相對論很快成為人們研究和討論的課題,愛因斯坦也受到了學術界的注意。

(圖)狹義和廣義相對論淺說廣義相對論

1907年,愛因斯坦聽從友人的建議,提交了那篇著名的論文申請聯邦工業大學的編外講師職位,但得到的答覆是論文無法理解。雖然在德國物理學界愛因斯坦已經很有名氣,但在瑞士,他卻得不到一個大學的教職,許多有名望的人開始為他鳴不平,1908年,愛因斯坦終於得到了編外講師的職位,並在第二年當上了副教授。1912年,愛因斯坦當上了教授,1913年,應普朗克之邀擔任新成立的威廉皇帝物理研究所所長和柏林大學教授。

在此期間,愛因斯坦在考慮將已經建立的相對論推廣,對於他來說,有兩個問題使他不安。第一個是引力問題,狹義相對論對於力學、熱力學和電動力學的物理規律是正確的,但是它不能解釋引力問題。牛頓的引力理論是超距的,兩個物體之間的引力作用在瞬間傳遞,即以無窮大的速度傳遞,這與相對論依據的場的觀點和極限的光速衝突。第二個是非慣性系問題,狹義相對論與以前的物理學規律一樣,都只適用於慣性系。但事實上卻很難找到真正的慣性系。從邏輯上說,一切自然規律不應該局限於慣性系,必須考慮非慣性系。狹義相對論很難解釋所謂的雙生了佯謬,該佯謬說的是,有一對孿生兄弟,哥在宇宙飛船上以接近光速的速度做宇宙航行,根據相對論效應,高速運動的時鐘變慢,等哥哥回來,弟弟已經變得很老了,因為地球上已經經歷了幾十年。而按照相對性原理,飛船相對於地球高速運動,地球相對於飛船也高速運動,弟弟看哥哥變年輕了,哥哥看弟弟也應該年輕了。這個問題簡直沒法回答。實際上,狹義相對論只處理勻速直線運動,而哥哥要回來必須經過一個變速運動過程,這是相對論無法處理的。正在人們忙於理解相對狹義相對論時,愛因斯坦正在接受完成廣義相對論。

1907年,愛因斯坦撰寫了關於狹義相對論的長篇文章《關於相對性原理和由此得出的結論》,在這篇文章中愛因斯坦第一次提到了等效原理,此後,愛因斯坦關於等效原理的思想又不斷發展。他以慣性質量和引力質量成正比的自然規律作為等效原理的根據,提出在無限小的體積中均勻的引力場完全可以代替加速運動的參照系。愛因斯坦並且提出了封閉箱的說法:在一封閉箱中的觀察者,不管用什麼方法也無法確定他究竟是靜止於一個引力場中,還是處在沒有引力場卻在作加速運動的空間中,這是解釋等效原理最常用的說法,而慣性質量與引力質量相等是等效原理一個自然的推論。

1915年11月,愛因斯坦先後向普魯士科學院提交了四篇論文,在這四篇論文中,他提出了新的看法,證明了水星近日點的進動,並給出了正確的引力場方程。至此,廣義相對論的基本問題都解決了,廣義相對論誕生了。1916年,愛因斯坦完成了長篇論文《廣義相對論的基礎》,在這篇文章中,愛因斯坦首先將以前適用於慣性系的相對論稱為狹義相對論,將只對於慣性系物理規律同樣成立的原理稱為狹義相對性原理,並進一步表述了廣義相對性原理:物理學的定律必須對於無論哪種方式運動著的參照系都成立。

愛因斯坦的廣義相對論認為,由於有物質的存在,空間和時間會發生彎曲,而引力場實際上是一個彎曲的時空。愛因斯坦用太陽引力使空間彎曲的理論,很好地解釋了水星近日點進動中一直無法解釋的43秒。廣義相對論的第二大預言是引力紅移,即在強引力場中光譜向紅端移動,20年代,天文學家在天文觀測中證實了這一點。廣義相對論的第三大預言是引力場使光線偏轉,。最靠近地球的大引力場是太陽引力場,愛因斯坦預言,遙遠的星光如果掠過太陽表面將會發生一點七秒的偏轉。1919年,在英國天文學家愛丁頓的鼓動下,英國派出了兩支遠征隊分赴兩地觀察日全食,經過認真的研究得出最後的結論是:星光在太陽附近的確發生了一點七秒的偏轉。英國皇家學會和皇家天文學會正式宣讀了觀測報告,確認廣義相對論的結論是正確的。會上,著名物理學家、皇家學會會長湯姆孫說:“這是自從牛頓時代以來所取得的關於萬有引力理論的最重大的成果”,“愛因斯坦的相對論是人類思想最偉大的成果之一”。愛因斯坦成了新聞人物,他在1916年寫了一本通俗介紹相對認的書《狹義相對論與廣義相對論淺說》,到1922年已經再版了40次,還被譯成了十幾種文字,廣為流傳。

相對論的意義

狹義相對論和廣義相對論建立以來,已經過去了很長時間,它經受住了實踐和歷史的考驗,是人們普遍承認的真理。相對論對於現代物理學的發展和現代人類思相的發展都有巨大的影響。 相對論從邏輯思想上統一了經典物理學,使經典物理學成為一個完美的科學體系。狹義相對論在狹義相對性原理的基礎上統一了牛頓力學和麥克斯韋電動力學兩個體系,指出它們都服從狹義相對性原理,都是對洛倫茲變換協變的,牛頓力學只不過是物體在低速運動下很好的近似規律。廣義相對論又在廣義協變的基礎上,通過等效原理,建立了局域慣性長與普遍參照係數之間的關係,得到了所有物理規律的廣義協變形式,並建立了廣義協變的引力理論,而牛頓引力理論只是它的一級近似。這就從根本上解決了以前物理學只限於慣性係數的問題,從邏輯上得到了合理的安排。相對論嚴格地考察了時間、空間、物質和運動這些物理學的基本概念,給出了科學而系統的時空觀和物質觀,從而使物理學在邏輯上成為完美的科學體系。

(圖)狹義和廣義相對論淺說狹義和廣義相對論淺說

狹義相對論給出了物體在高速運動下的運動規律,並提示了質量與能量相當,給出了質能關係式。這兩項成果對低速運動的巨觀物體並不明顯,但在研究微觀粒子時卻顯示了極端的重要性。因為微觀粒子的運動速度一般都比較快,有的接近甚至達到光速,所以粒子的物理學離不開相對論。質能關係式不僅為量子理論的建立和發展創造了必要的條件,而且為原子核物理學的發展和套用提供了根據。

廣義相對論建立了完善的引力理論,而引力理論主要涉及的是天體。到現在,相對論宇宙學進一步發展,而引力波物理、緻密天體物理和黑洞物理這些屬於相對論天體物理學的分支學科都有一定的進展,吸引了許多科學家進行研究。

一位法國物理學家曾經這樣評價愛因斯坦:“在我們這一時代的物理學家中,愛因斯坦將位於最前列。他現在是、將來也還是人類宇宙中最有光輝的巨星之一”,“按照我的看法,他也許比牛頓更偉大,因為他對於科學的貢獻,更加深入地進入了人類思想基本要領的結構中。”

相對論是關於時空和引力的基本理論,主要由愛因斯坦(Albert Einstein)創立,分為狹義相對論(特殊相對論)和廣義相對論(一般相對論)。相對論的基本假設是光速不變原理,相對性原理和等效原理。相對論和量子力學是現代物理學的兩大基本支柱。奠定了經典物理學基礎的經典力學,不適用於高速運動的物體和微觀條件下的物體。相對論解決了高速運動問題;量子力學解決了微觀亞原子條件下的問題。相對論極大的改變了人類對宇宙和自然的“常識性”觀念,提出了“同時的相對性”,“四維時空”“彎曲空間”等全新的概念。

狹義相對論,是只限於討論慣性系情況的相對論。牛頓時空觀認為空間是平直的、各向同性的和各點同性的的三維空間——絕對空間,時間是獨立於空間的單獨一維(因而也是絕對的),即絕對時空觀。狹義相對論認為空間和時間並不相互獨立,而是一個統一的四維時空整體,並不存在絕對的空間和時間。在狹義相對論中,整個時空仍然是平直的、各向同性的和各點同性的,這是一種對應於“全局慣性系”的理想狀況。狹義相對論將真空中光速為常數作為基本假設,結合狹義相對性原理和上述時空的性質可以推出洛侖茲變換。

廣義相對論是愛因斯坦在1915年發表的理論。愛因斯坦提出“等效原理”,即引力和慣性力是等效的。這一原理建立在引力質量與慣性質量的等價性上(目前實驗證實,在10 − 12的精確度範圍內,仍沒有看到引力質量與慣性質量的差別)。根據等效原理,愛因斯坦把狹義相對性原理推廣為廣義相對性原理,即物理定律的形式在一切參考系都是不變的。物體的運動方程即該參考系中的測地線方程。測地線方程與物體自身故有性質無關,只取決於時空局域幾何性質。而引力正是時空局域幾何性質的表現。物質質量的存在會造成時空的彎曲,在彎曲的時空中,物體仍然順著最短距離進行運動(即沿著測地線運動——在歐氏空間中即是直線運動),如地球在太陽造成的彎曲時空中的測地線運動,實際是繞著太陽轉,造成引力作用效應。正如在彎曲的地球表面上,如果以直線運動,實際是繞著地球表面的大圓走。

倒相對論:相對論的提出,同樣受到很多的指責,有很多人認為它是錯誤的,並大大阻礙了社會的發展。然而這種觀點並不被主流科學界所接受。

愛因斯坦和他的相對論

(圖)愛因斯坦愛因斯坦

除了量子理論以外,1905年剛剛得到博士學位的愛因斯坦發表的一篇題為《論動體的電動力學》的文章引發了二十世紀物理學的另一場革命。文章研究的是物體的運動對光學現象的影響,這是當時經典物理學面對的另一個難題。

十九世紀中葉,麥克斯韋建立了電磁場理論,並預言了以光速C傳播的電磁波的存在。到十九世紀末,實驗完全證實了麥克斯韋理論。電磁波是什麼?它的傳播速度C是對誰而言的呢?當時流行的看法是整個宇宙空間充滿一種特殊物質叫做“以太”,電磁波是以太振動的傳播。但人們發現,這是一個充滿矛盾的理論。如果認為地球是在一個靜止的以太中運動,那么根據速度迭加原理,在地球上沿不同方向傳播的光的速度必定不一樣,但是實驗否定了這個結論。如果認為以太被地球帶著走,又明顯與天文學上的一些觀測結果不符。

1887年麥可遜莫雷利用光的干涉現象進行了非常精確的測量,仍沒有發現地球有相對於以太的任何運動。對此,洛侖茲(H.A.Lorentz)提出了一個假設,認為一切在以太中運動的物體都要沿運動方向收縮。由此他證明了,即使地球相對以太有運動,麥可遜也不可能發現它。愛因斯坦從完全不同的思路研究了這一問題。他指出,只要摒棄牛頓所確立的絕對空間和絕對時間的概念,一切困難都可以解決,根本不需要什麼以太。

愛因斯坦提出了兩條基本原理作為討論運動物體光學現象的基礎。第一個叫做相對性原理。它是說:如果坐標系K'相對於坐標系K作勻速運動而沒有轉動,則相對於這兩個坐標系所做的任何物理實驗,都不可能區分哪個是坐標系K,哪個是坐標系K′。第二個原理叫光速不變原理,它是說光(在真空中)的速度c是恆定的,它不依賴於發光物體的運動速度。

從表面上看,光速不變似乎與相對性原理衝突。因為按照經典力學速度的合成法則,對於K′和K這兩個做相對勻速運動的坐標系,光速應該不一樣。愛因斯坦認為,要承認這兩個原理沒有牴觸,就必須重新分析時間與空間的物理概念。

經典力學中的速度合成法則實際依賴於如下兩個假設:1.兩個事件發生的時間間隔與測量時間所用的鐘的運動狀態沒有關係;2.兩點的空間距離與測量距離所用的尺的運動狀態無關。愛因斯坦發現,如果承認光速不變原理與相對性原理是相容的,那么這兩條假設都必須摒棄。這時,對一個鍾是同時發生的事件,對另一個鐘不一定是同時的,同時性有了相對性。在兩個有相對運動的坐標系中,測量兩個特定點之間的距離得到的數值不再相等。距離也有了相對性。

如果設K坐標系中一個事件可以用三個空間坐標x、y、z和一個時間坐標t來確定,而K′坐標系中同一個事件由x′、y′、z′和t′來確定,則愛因斯坦發現,x′、y′、z′和t′可以通過一組方程由x、y、z和t求出來。兩個坐標系的相對運動速度和光速c是方程的唯一參數。這個方程最早是由洛侖茲得到的,所以稱為洛侖茲變換。

利用洛侖茲變換很容易證明,鍾會因為運動而變慢,尺在運動時要比靜止時短,速度的相加滿足一個新的法則。相對性原理也被表達為一個明確的數學條件,即在洛侖茲變換下,帶撇的空時變數x'、y'、z'、t'將代替空時變數x、y、z、t,而任何自然定律的表達式仍取與原來完全相同的形式。人們稱之為普遍的自然定律對於洛侖茲變換是協變的。這一點在我們探索普遍的自然定律方面具有非常重要的作用。

此外,在經典物理學中,時間是絕對的。它一直充當著不同於三個空間坐標的獨立角色。愛因斯坦的相對論把時間與空間聯繫起來了。認為物理的現實世界是各個事件組成的,每個事件由四個數來描述。這四個數就是它的時空坐標t和x、y、z,它們構成一個四維的連續空間,通常稱為閔可夫斯基四維空間。在相對論中,用四維方式來考察物理的現實世界是很自然的。狹義相對論導致的另一個重要的結果是關於質量和能量的關係。在愛因斯坦以前,物理學家一直認為質量和能量是截然不同的,它們是分別守恆的量。愛因斯坦發現,在相對論中質量與能量密不可分,兩個守恆定律結合為一個定律。他給出了一個著名的質量-能量公式:E=mc2,其中c為光速。於是質量可以看作是它的能量的量度。計算表明,微小的質量蘊涵著巨大的能量。這個奇妙的公式為人類獲取巨大的能量,製造核子彈和氫彈以及利用原子能發電等奠定了理論基礎。

對愛因斯坦引入的這些全新的概念,大部分物理學家,其中包括相對論變換關係的奠基人洛侖茲,都覺得難以接受。舊的思想方法的障礙,使這一新的物理理論直到一代人之後才為廣大物理學家所熟悉,就連瑞典皇家科學院,1922年把諾貝爾獎金授予愛因斯坦時,也只是說“由於他對理論物理學的貢獻,更由於他發現了光電效應的定律。”對於相對論隻字未提。

愛因斯坦於1915年進一步建立起了廣義相對論。狹義相對性原理還僅限於兩個相對做勻速運動的坐標系,而在廣義相對論性原理中勻速運動這個限制被取消了。他引入了一個等效原理,認為我們不可能區分引力效應和非勻速運動,即非勻速運動和引力是等效的。他進而分析了光線在靠近一個行量附近穿過時會受到引力而彎折的現象,認為引力的概念本身完全不必要。可以認為行星的質量使它附近的空間變成彎曲,光線走的是最短程線。基於這些討論,愛因斯坦導出了一組方程,它們可以確定由物質的存在而產生的彎曲空間幾何。利用這個方程,愛因斯坦計算了水星近日點的位移量,與實驗觀測值完全一致,解決了一個長期解釋不了的困難問題,這使愛因斯坦激動不已。他在寫給埃倫菲斯特的信中這樣寫道:“……方程給出了近日點的正確數值,你可以想像我有多高興!有好幾天,我高興得不知怎樣才好。”

1915年11月25日,愛因斯坦把題為“萬有引力方程”的論文提交給了柏林普魯士科學院,完整地論述了廣義相對論。在這篇文章中他不僅解釋了天文觀測中發現的水星軌道近日點移動之謎,而且還預言:星光經過太陽會發生偏折,偏折角度相當於牛頓理論所預言的數值的兩倍。第一次世界大戰延誤了對這個數值的測定。1919年5月25日的日全食給人們提供了大戰後的第一次觀測機會。英國人愛丁頓奔赴非洲西海岸的普林西比島,進行了這一觀測。11月6日,湯姆遜在英國皇家學會和皇家天文學會聯席會議上鄭重宣布:得到證實的是愛因斯坦而不是牛頓所預言的結果。他稱讚道“這是人類思想史上最偉大的成就之一。愛因斯坦發現的不是一個小島,而是整整一個科學思想的新大陸。”泰晤士報以“科學上的革命”為題對這一重大新聞做了報導。訊息傳遍全世界,愛因斯坦成了舉世矚目的名人。廣義相對論也被提高到神話般受人敬仰的寶座。

目錄

《狹義與廣義相對論淺說》導讀

(圖)狹義和廣義相對論淺說狹義和廣義相對論淺說

序言

本書的目的,是儘可能使那些從一般科學和哲學的角度對相對論有興趣而又不熟悉理論物理的數學工具的讀者對相對論有一個正確的了解。本書假定讀者已具備相當於大學入學考試的知識水平,而且,儘管本書篇幅不長,讀者仍須具有相當大的耐心和毅力。作者力求以最簡單、最明了的方式來介紹相對論的主要概念,並大體上按照其實際創生的次序和聯繫來敘述。為了便於明了起見,我感到不能不經常有所重複,而不去考慮文體的優美與否。我嚴謹地遵照傑出的理論物理學家玻耳茲曼的格言,即形式是否優美的問題應該留給裁縫和鞋匠去考慮。但是我不敢說這樣已可為讀者解除相對論中固有的難處。另一方面,我在論述相對論的經驗性物理基礎時,又有意識地採用了“繼母”式的做法,以便不熟悉物理的讀者不致感到像一個只見樹木不見森林的迷路人。但願本書能為某些讀者招致愉快的思考時間。
----愛因斯坦 1916年12月
第一部分 狹義相對論

1.幾何命題的物理意義
2.坐標系
3.經典力學中的空間和時間
4.伽利略坐標系
5.相對性原理(狹義)
6.經典力學中所用的速度相加定理
7.光的傳播定律與相對性原理的表面牴觸
8.物理學的時間觀
9.同時性的相對性
10.距離概念的相對性
11.洛倫茲變換
12.量桿和鍾在運動時的行為
13.速度相加定理斐索實驗
14.相對論的啟發作用
15.狹義相對論的普遍性結果
16.經驗和狹義相對論
17.閔可夫斯基四維空間
第二部分 廣義相對論
18.狹義和廣義相對性原理
19.引力場
20.慣性質量和引力質量相等是廣義相對性公理的一個論據
21.經典力學的基礎和狹義相對論的基礎在哪些方面不能令人滿意
22.廣義相對性原理的幾個推論
23.在轉動的參考物體上的鐘和量桿的行為
24.歐幾里得和非歐幾里得連續區域
25.高斯坐標
26.狹義相對論的空時連續區可以當做歐幾里得連續區
27.廣義相對論的空時連續區不是歐幾里得連續區
28.廣義相對性原理的嚴格表述.
29.在廣義相對性原理的基礎上解引力問題
第三部分 關於整個宇宙的一些考慮
30.牛頓理論在宇宙論方面的困難
31.一個“有限”而又“無界”的宇宙的可能性
32.以廣義相對論為依據的空間結構
附錄I

1.洛倫茲變換的簡單推導
2.閔可夫斯基四維空問(“世界”)
3.廣義相對論的實驗證實
4.以廣義相對論為依據的空間結構
5.相對論與窄問問題
附錄II
1.自述
2.自述片段
3.以太和相對論
4.物理學中的空間、以太和場的問題
5.相對性:相對論的本質
6.論動體的電動力學
7.關於統一場論

相關搜尋

熱門詞條

聯絡我們