等離子

等離子

等離子態是一種普遍存在的狀態。宇宙中大部分發光的星球內部溫度和壓力都很高,這些星球內部的物質差不多都處於等離子態。只有那些昏暗的行星和分散的星際物質里才可以找到固態、液態和氣態的物質。電漿的用途非常廣泛.從我們的日常生活到工業、農業、環保、軍事、宇航、能源、天體等方面,它都有非常重要的套用價值。等離子態下的物質具有類似於氣態的性質,比如良好的流動性和擴散性。但是,由於電漿的基本組成粒子是離子和電子,因此它也具有許多區別於氣態的性質,比如良好的導電性、導熱性。特別的,根據科學計算,電漿的比熱容與溫度成正比,高溫下電漿的比熱容往往是氣體的數百倍。

基本信息

簡介

等離子等離子
等離子態是一種普遍存在的狀態。宇宙中大部分發光的星球內部溫度和壓力都很高,這些星球內部的物質差不多都處於等離子態。只有那些昏暗的行星和分散的星際物質里才可以找到固態、液態和氣態的物質。
電漿的用途非常廣泛.從我們的日常生活到工業、農業、環保、軍事、宇航、能源、天體等方面,它都有非常重要的套用價值.

具體介紹

帶正電荷的原子核和帶負電荷的電子等離子態:帶正電荷的原子核(中子質子)和帶負電荷的電子-內部結構模型圖
等離子狀態使指物質原子內的電子在高溫下脫離原子核的吸引,使物質呈為正負帶電粒子狀態存在。

在日常生活中,我們會遇到各種各樣的物質.根據它們的狀態,可以分為三大類,即固體、液體和氣體.例如鋼鐵是固體,是液體,而氧氣是氣體.任何一種物質,在一定條件下都能在這三種狀態之間轉變.以水為例,在一個標準大氣壓下,當溫度降到0℃以下時,水開始變成冰.而當溫度升到100℃時,水就會沸騰而變成水蒸汽.

如果溫度不斷升高,氣體又會怎樣變化呢?科學家告訴我們,這時構成分子的原子發生分裂,形成為獨立的原子,如氮分子會分裂成兩個氮原子,我們稱這種過程為氣體分子的離解.如果再進一步升高溫度,原子中的電子就會從原子中剝離出來,成為帶正電荷的原子核和帶負電荷的電子,這個過程稱為原子的電離.當這種電離過程頻繁發生,使電子和離子的濃度達到一定的數值時,物質的狀態也就起了根本的變化,它的性質也變得與氣體完全不同.為區別於固體、液體和氣體這三種狀態,我們稱物質的這種狀態為物質的第四態,又起名叫等離子態.

在茫茫無際的宇宙空間裡,等離子態是一種普遍存在的狀態。宇宙中大部分發光的星球內部溫度和壓力都很高,這些星球內部的物質差不多都處於等離子態。只有那些昏暗的行星和分散的星際物質里才可以找到固態、液態和氣態的物質。

就在我們周圍,也經常看到等離子態的物質。在日光燈和霓虹燈的燈管里,在眩目的白熾電弧里,都能找到它的蹤跡。另外,在地球周圍的電離層里,在美麗的極光、大氣中的閃光放電和流星的尾巴里,也能找到奇妙的等離子態。
等離子態

將氣體加熱,當其原子達到幾千甚至上萬攝氏度時,電子就會被原子被"甩"掉,原子變成只帶正電荷的離子。此時,電子和離子帶的電荷相反,但數量相等,這種狀態稱做等離子態。人們常年看到的閃電、流星以及螢光燈點燃時,都是處於等離子態。人類可以利用它放出大量能量產生的高溫,切割金屬、製造半導體元件、進行特殊的化學反應等. 在茫茫無際的宇宙空間裡,等離子態是一種普遍存在的狀態。宇宙中大部分發光的星球內部溫度和壓力都很高,這些星球內部的物質差不多都處於等離子態。只有那些昏暗的行星和分散的星際物質里才可以找到固

等離子等離子
態、液態和氣態的物質。

電漿

等離子態,(電漿,英文:Plasma)是一種電離的氣體,由於存在電離出來的自由電子和帶電離子,電漿具有很高的電導率,與電磁場存在極強的耦合作用。等離子態在宇宙中廣泛存在,常被看作物質的第四態(有人也稱之為“超氣態”)。電漿由克魯克斯在1879年發現,“Plasma”這個詞,由朗廖爾在1928年最早採用。

電漿的性質

1 電漿是由大量帶電粒子組成的非凝聚系統。例如,當氣體被加熱到足夠高的溫度,或受到高能帶電粒子轟擊時,中性氣體原子將被電離,空間中形成大量的自由電子和陽離子,但總體上又保持電中性。

2 實際使用的電漿則是由大量自由電子、陽離子、陰離子、原子和分子組成的、整體上近似電中性的物質狀態。

3 電漿狀態是物質存在的基本形態之一,與固態,液態和氣態並列,稱為物質第四態。

4 電漿的主要特徵是:粒子間存在長城庫侖相互作用,電漿的運動與電磁場的運動緊密耦合,存在極其豐富的集體效應和集體運動模式。和物質的另外三態相比,電漿可以存在的參數範圍異常寬廣(其密度,溫度以及磁場強度都可以跨越十幾個數量級);電漿的形態和性質受外加電磁場的強烈影響,並存在極其豐富的集體運動模式(如各種電磁波,漂移波,靜電波以及非線性的相干結構和湍動);

5 此外,電漿對外界條件還十分敏感。所以,電漿性質的研究強烈的依賴於具體的研究對象。
等離子態常被稱為“超氣態”,它和氣體有很多相似之處,比如:沒有確定形狀和體積,具有流動性,但等離子也有很多獨特的性質。

電離

電漿和普通氣體的最大區別是它是一種電離氣體。由於存在帶負電的自由電子和帶正電的離子,有很高的電導率,和電磁場的耦合作用也極強:帶電粒子可以同電場耦合,帶電粒子流可以和磁場耦合。描述電漿要用到電動力學,並因此發展起來一門叫做磁流體動力學的理論。

組成粒子和一般氣體不同的是,電漿包含兩到三種不同組成粒子:自由電子,帶正電的離子和未電離的原子。這使得我們針對不同的組分定義不同的溫度:電子溫度和離子溫度。輕度電離的電漿,離子溫度一般遠低於電子溫度,稱之為“低溫電漿”。高度電離的電漿,離子溫度和電子溫度都很高,稱為“高溫電漿”。

相比於一般氣體,電漿組成粒子間的相互作用也大很多。

速率分布

一般氣體的速率分布滿足麥克斯韋分布,但電漿由於與電場的耦合,可能偏離麥克斯韋分布。
常見的電漿
電漿是存在最廣泛的一種物態,目前觀測到的宇宙物質中,99%都是電漿。
* 人造的電漿
o 螢光燈,霓虹燈燈管中的電離氣體
o 核聚變實驗中的高溫電離氣體
o 電焊時產生的高溫電弧
* 地球上的電漿
o 火焰(上部的高溫部分)
o 閃電
o 大氣層中的電離層
o 極光
* 宇宙空間中的電漿
o 恆星
o 太陽風
o 行星際物質
o 恆星際物質
o 星雲
* 其它電漿

套用領域

電漿的用途非常廣泛.從我們的日常生活到工業、農業、環保、軍事、宇航、能源、天體等方面,它都有非常重要的套用價值。

一個重要的研究是高溫電漿和受控熱核聚變反應:如果用物質中最輕的元素,如氫的同位素氘,形成一個攝氏幾千萬度的高溫電漿,那么,這些原子核會發生核反應.結果會放出巨大的能量,科學家稱它為熱核聚變反應.氫彈就是這樣一個爆炸性的熱核聚變反應.但人類希望有一個慢慢放出能量並可以發電的熱核聚變反應,建造一個“人造小太陽”,然而,這個目標至今尚未實現。

另一個重要套用是一些特殊的化學元素形成一個攝氏幾萬度的低溫電漿,這時,物質間會發生特殊的化學反應,因此可用來研製新的材料.如在鑽頭等工具上塗上一層薄薄的鈦來提高工具的強度、製造太陽能電池、在飛機的表面上塗一層專門吸收雷達波的材料可躲避雷達的跟蹤(即隱形飛機)……這些被稱為電漿薄膜技術。

另外,還可用電漿脫掉煙塵中的硫、用電漿照射種子來提高農作物的產量、研製大螢幕的電漿電視機、研製電漿火箭發動機到火星等遙遠的宇宙去旅行……電漿的套用真是舉不勝舉。

等離子的特點:等離子是一種自發光顯示技術,不需要背景光源,因此沒有LCD顯示器的視角和亮度均勻性問題,而且實現了較高的亮度和對比度。而三基色共用同一個等離子管的設計也使其避免了聚焦和匯聚問題,可以實現非常清晰的圖像。與CRTLCD顯示技術相比,等離子的螢幕越大,圖像的色深和保真度越高。除了亮度、對比度和可視角度優勢外,等離子技術也避免了LCD技術中的回響時間問題,而這些特點正是動態視頻顯示中至關重要的因素。因此從目前的技術水平看,等離子顯示技術在動態視頻顯示領域的優勢更加明顯,更加適合作為家庭影院和大螢幕顯示終端使用。等離子顯示器無掃描線掃描,因此圖像清晰穩定無閃爍,不會導致眼睛疲勞。等離子也無X射線輻射。由於這些突出特點,等離子堪稱真正意義上的綠色環保顯示產品,是替代傳統CRT彩電的理想產品。

顯示屏和電視

等離子電視等離子電視
PDP的全稱是Plasma Display Panel,中文叫等離子顯示器,它是在兩張超薄的玻璃板之間注入混合氣體,並施加電壓利用螢光粉發光成像的設備。與CRT顯像管顯示器相比,具有解析度高,螢幕大,超薄,色彩豐富、鮮艷的特點。與LCD相比,具有亮度高,對比度高,可視角度大,顏色鮮艷和接口豐富等特點。

工作原理:是一種利用氣體放電的顯示技術,其工作原理與日光燈很相似。它採用了等離子管作為發光元件,螢幕上每一個等離子管對應一個像素,螢幕以玻璃作為基板,基板間隔一定距離,四周經氣密性封接形成一個個放電空間。放電空間內充入氖、氙等混合惰性氣體作為工作媒質。在兩塊玻璃基板的內側面上塗有金屬氧化物導電薄膜作激勵電極。 當向電極上加入電壓,放電空間內的混合氣體便發生電漿放電現象。氣體電漿放電產生紫外線,紫外線激發螢光屏,螢光屏發射出可見光,顯現出圖像。當使用塗有三原色(也稱三基色)螢光粉的螢光屏時,紫外線激發螢光屏,螢光屏發出的光則呈紅、綠、藍三原色。當每一原色單元實現256級灰度後再進行混色,便實現彩色顯示。電漿顯示器技術按其工作方式可分為電極與氣體直接接觸的直流型PDP和電極上覆蓋介質層的交流型PDP兩大類。目前研究開發的彩色PDP的類型主要有三種:單基板式(又稱表面放電式)交流PDP、雙式(又稱對向放電式)交流PDP和脈衝存儲直流PDP。
等離子彩電PDP是在兩張薄玻璃板之間充填混合氣體,施加電壓使之產生離子氣體,然後使等離子氣體放電,與基板中的螢光體發生反應,產生彩色影像。等離子彩電又稱“壁掛式電視”,不受磁力和磁場影響,具有機身纖薄、重量輕、螢幕大、色彩鮮艷、畫面清晰、亮度高、失真度小、節省空間等優點。

等離子是採用近幾年來高速發展的等離子平面螢幕技術的新—代顯示設備,目前市場上銷售的產品有兩種類型,一種是等離子顯示屏,另一種是等離子電視,兩者在本質上沒有太大的區別,唯一的區別是有沒有內置電視接收調諧器。

由於PDP發展初期主要是針對商業展示用途,所以當前仍有很多PDP都沒有內置電視接收調諧器,也就是說,不能直接接收電視信號。因此如果選擇的是這種產品,那么只能通過衛星解碼器或錄像機等其它設備來兼作電視訊號調諧接收器,也可另購—個電視接收器。現在等離子已經開始面對家庭用戶設計生產,目前生產的部分等離子開始內置電視接收器,這些機型預先就設有RF射頻連線端子,可以直接播放電視節目。

大部分國產的PDP都是內置電視接收器,如海信、上廣電SVA和TCL的多款產品。而國外的廠家,有些產品採用外置電視接收器,也有部分產品採用內置電視接收器。一般把外置電視接收器的PDP稱為等離子顯示屏,把內置電視接收器的PDP稱為等離子電視,選購時應問清楚是否帶電視接收功能。

切割機

等離子等離子
在工業上的套用有等離子切割機,等離子切割配合不同的工作氣體可以切割各種氧氣切割難以切割的金屬,尤其是對於有色金屬(不鏽鋼、鋁、銅、鈦、鎳)切割效果更佳;其主要優點在於切割厚度不大的金屬的時候,等離子切割速度快,尤其在切割普通碳素鋼薄板時,速度可達氧切割法的5~6倍、切割面光潔、熱變形小、幾乎沒有熱影響區。

等離子劍

等離子劍(英語:lightsaber)又譯光劍,在《星球大戰》的世界觀中是一種占有舉足輕重地位的武器,無論是有關星戰的電影、小說或是遊戲中都經常可以見到。在星戰的世界觀中,光劍的概念即是傳統的金屬劍身被某種以純粹能量形式存在的物質所代替,而這種能量可以被凝聚成長度一米左右的劍刃形狀,並發出特定顏色的光芒。關於這種能量到底是什麼,或許是由於有些媒體的錯誤宣傳,有時人們會不正確地把這種構成劍身的物質簡單理解為雷射或其他什麼光束,從而引起一些光劍是否違反物理定律之類的疑問,但事實是星戰中任何地方都找不到支持劍身由光構成這一說法的證據,儘管能量這一說法非常含糊。有說法解釋這種能量為一團電漿,受到很強的磁場作用被束縛成劍的形狀。光劍的劍身是由其後的金屬劍柄發射出的,劍柄一般來說約長二十至三十厘米,可以根據使用者的個人需要被設計成特定的樣式。光劍開關開啟和關閉時,以及光劍揮動時都會發出磁場嗡嗡的聲音。

焊機

等離子弧是離子氣被電離產生高溫離子氣流,從噴嘴細孔中噴出,經壓縮形成細長的弧柱,其溫度可達18000-24000K,高於常規的自由電弧,如:氬弧焊僅達5000-8000K。由於等離子弧具有弧柱細長,能量密度高的特點,因而在焊接領域有著廣泛的套用。
等離子焊機具有以下明顯特點:
高效高質量的等離子焊接工藝方法,利用等離子電弧良好的小孔穿透的能力,在保證單面焊雙面成型的同時,儘量提高焊接速度,是TIG焊接效率的5~7倍。
採用等離子與TIG複合焊,等離子打底,TIG蓋面,可以更加有效提高焊接質量和效率。TIG焊的自由電弧有良好的履蓋能力,再配合上適量的填充金屬重熔,達到正面成形美觀的效果,是單槍等離子焊接效率的1.3-1.5倍。
主要針對薄壁3~10mm不鏽鋼板、鈦合金板等材料容器的縱環縫焊接。
對於壁厚8mm以下不鏽鋼板、壁厚10mm以下鈦合金板不開坡口可實現單面焊雙面成型。

隱形飛機

電漿另一個重要套用是一些特殊的化學元素形成一個巨觀溫度並不高,但電子溫度可達到攝氏幾萬度的低溫電漿,這時,物質間會發生特殊的化學反應,因此可用來研製新的材料.如在鑽頭等工具上塗上一層薄薄的氮化鈦來提高工具的強度、製造太陽能電池、在飛機的表面上塗一層專門吸收雷達波的材料可躲避雷達的跟蹤(即隱形飛機)……這些被稱為電漿薄膜技術。

工作原理
這是一種利用氣體放電的顯示技術,其工作原理與日光燈很相似。它採用了等離子管作為發光元件,螢幕上每一個等離子管對應一個像素,螢幕以玻璃作為基板,基板間隔一定距離,四周經氣密性封接形成一個個放電空間。放電空間內充入氖、氙等混合惰性氣體作為工作媒質。
在兩塊玻璃基板的內側面上塗有金屬氧化物導電薄膜作激勵電極。當向電極上加入電壓,放電空間內的混合氣體便發生電漿放電現象。氣體電漿放電產生紫外線,紫外線激發螢光屏,螢光屏發射出可見光,顯現出圖像。當使用塗有三原色(也稱三基色)螢光粉的螢光屏時,紫外線激發螢光屏,螢光屏發出的光則呈紅、綠、藍三原色。當每一原色單元實現256級灰度後再進行混色,便實現彩色顯示。電漿顯示器技術按其工作方式可分為電極與氣體直接接觸的直流型PDP和電極上覆蓋介質層的交流型PDP兩大類。二十一世紀研究開發的彩色PDP的類型主要有三種:單基板式(又稱表面放電式)交流PDP、雙式(又稱對向放電式)交流PDP和脈衝存儲直流PDP。

手術系統

“電漿”技術,是以特定超低頻率100Khz電能激發介質(Nacl)產生電漿,電漿中的高速帶電粒子直接打斷分子鍵,使蛋白質等組織裂解汽化成H2,O2,CO2,N2和甲烷等低分子量氣體。
普通高頻500-4000KHz可改變電場下,粒子一方面無法獲得足夠的加速時間,處於往復的震盪狀態;另一方面高頻下加劇的分子摩擦會產生較強的熱效應,且頻率越高產熱越多。
但100KHz低頻穩定電場下,粒子則會獲得更長的加速時間,最終形成帶有更大動能的高速帶電粒子,直接打斷分子鍵。此外因頻率低,較之高頻大大降低了分子間的摩擦產熱,使切割、消融和止血等過程都在40℃~70℃內完成,從而實現微創效應。
電外科設備經歷了“電刀”—“普通射頻”—“電漿射頻”,由低向高的發展階段。
“電漿”技術用直接的“汽化”工作方式徹底改變了傳統“射頻”的“熱能”工作方式,40℃~70℃的組織汽化替代了傳統“切割”、“止血”等過程中上百度高溫對組織的灼傷破壞作用,大大降低了手術過程中的創傷。
“電漿”技術在臨床治療中產生的微創效應正是未來醫學發展的趨勢。

其他用處

另外,還可用電漿脫掉煙塵中的硫、用電漿照射種子來提高農作物的產量、研製大螢幕的電漿電視機、研製電漿火箭發動機到火星等遙遠的宇宙去旅行……電漿的套用舉不勝舉。
還有,等離子在醫學手術治療方面也受到重視。譬如2011年來受大眾歡迎的等離子低溫消融手術--用來治療鼻炎,咽炎,打鼾等疾病。等離子低溫消融手術的原理是使電極和組織間形成等離子薄層,層中離子被電場加速,並將能量傳遞給組織,在低溫下(40℃―70℃)打開細胞間分子結合鍵,使靶組織中的細胞分解為碳水化合物和氧化物造成病變組織液化消融,稱為等離子(不是熱效應),從而達到靶組織體積減容的效果。

其爭論點

產生磁場的必備條件是電荷的變化或者電荷的運動,這個是麥克斯韋電磁場理論的最基本的定理,所以如果說等離子自己能夠產生磁場影響其他離子的運動,就不需要附加電壓點火了,這不相當於能量是無限的,不就是永動機了嗎,這就違反了能量守恆定律;
所以等離子的點火的關鍵步驟還是附加的電場才對,離子在電場的作用下運動就會產生磁場,這正是電磁波的構成;科技加熱能夠使分子電離化的,因為氣體分子加熱就會膨脹,而電離的本質從分子的角度出發,就是分子間的離子鍵斷裂,如果是氣體分子,要使鍵斷裂必須要給鍵足夠大的力,而這正是氣體分子難以解決的問題,因為加熱氣體,只會使氣體分子的運動速度加快,是的氣體膨脹,鍵是不會斷裂的,所以需要限制空間,最多能夠加熱到超臨界溫度這個正是發電站的瓶頸,而這個溫度下根本就不能電離。

相關詞條

相關搜尋

熱門詞條

聯絡我們