可燃冰

可燃冰

可燃冰,即天然氣水合物(Natural Gas Hydrate,簡稱Gas Hydrate),是分布於深海沉積物或陸域的永久凍土中,由天然氣與水在高壓低溫條件下形成的類冰狀的結晶物質。因其外觀像冰一樣而且遇火即可燃燒,所以又被稱作“可燃冰”(Combustible ice)或者“固體瓦斯”和“氣冰”。其實是一個固態塊狀物。天然氣水合物在自然界廣泛分布在大陸永久凍土、島嶼的斜坡地帶、活動和被動大陸邊緣的隆起處、極地大陸架以及海洋和一些內陸湖的深水環境。2013年6月至9月,在廣東沿海珠江口盆地東部海域首次鑽獲高純度天然氣水合物樣品,並通過鑽探獲得可觀的控制儲量。2014年2月1日,南海天然氣水合物富集規律與開採基礎研究通過驗收,建立起中國南海[南中國海和中國南海]“可燃冰”基礎研究系統理論。2017年5月,中國首次海域天然氣水合物(可燃冰)試采成功。2017年11月3日,國務院正式批准將天然氣水合物列為新礦種,成為國家第173個礦種。

基本信息

組成結構

可燃冰 可燃冰
天然氣水合物(Natural Gas Hydrate,簡稱Gas Hydrate),也稱為可燃冰、甲烷水合物、甲烷冰、天然氣水合物、“籠形包合物”(Clathrate),分子式為:CH4·nH2O,現已證實分子式為CH4·8H2O。。因其外觀像冰一樣而且遇火即可燃燒,所以又被稱作“可燃冰”(英譯為:Flammable ice)或者“固體瓦斯”和“氣冰”。形成天然氣水合物有三個基本條件:溫度、壓力和原材料。

天然氣水合物是一種白色固體物質,有極強的燃燒力,主要由水分子和烴類氣體分子(主要是甲烷)組成,它是在一定條件(合適的溫度、壓力、氣體飽和度、水的鹽度、PH值等)下由水和天然氣在中高壓和低溫條件下混合時組成的類凍的、非化學計量的、籠形結晶化合物(碳的電負性較大,在高壓下能吸引與之相近的氫原子形成氫鍵,構成籠狀結構)。一旦溫度升高或壓強降低,甲烷氣則會逸出,固體水合物便趨於崩解。

“天然氣水合物”,是天然氣在0℃和30個大氣壓的作用下結晶而成的“冰塊”。“冰塊”里甲烷占80%~99.9%,可直接點燃。可用mCH4·nH2O來表示,m代表水合物中的氣體分子,n為水合指數(也就是水分子數)。組成天然氣的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成單種或多種天然氣水合物。形成天然氣水合物的主要氣體為甲烷,對甲烷分子含量超過99%的天然氣水合物通常稱為甲烷水合物(Methane Hydrate)。每單位晶胞內有兩個十二面體(20 個端點因此有 20 個水分子)和六個十四面體(tetrakaidecahedral)(24 個水分子)的水籠結構。其水合值(hydratation value)20 可由 MAS NMR 來求得。 甲烷氣水包合物頻譜於 275 K 和 3.1 MPa下記錄,顯示出每個籠形都反映出峰值,且氣態的甲烷也有個別的峰值。

理化性質

可燃冰 可燃冰
天然氣水合物燃燒後幾乎不產生任何殘渣,污染比煤、石油、天然氣都要小得多。1立方米可燃冰可轉化為164立方米的天然氣和0.8立方米的水。開採時只需將固體的“天然氣水合物”升溫減壓就可釋放出大量的甲烷氣體。

天然氣水合物在海洋淺水生態圈,通常出現在深層的沉澱物結構中,或是在海床處露出。甲烷氣水包合物據推測是因地理斷層深處的氣體遷移,以及沉澱、結晶等作用,於上升的氣體流與海洋深處的冷水接觸所形成。

在高壓下,甲烷氣水包合物在 18 °C 的溫度下仍能維持穩定。一般的甲烷氣水化合物組成為 1摩爾的甲烷及每 5.75 摩爾的水,然而這個比例取決於多少的甲烷分子“嵌入”水晶格各種不同的包覆結構中。據觀測的密度大約在 0.9 g/cm³。一升的甲烷氣水包合物固體,在標準狀況下,平均包含 168 升的甲烷氣體。

1立方米的可燃冰可在常溫常壓下釋放164立方米的天然氣及0.8立方米的淡水)所以固體狀的天然氣水合物往往分布於水深大於 300 米 以上的海底沉積物或寒冷的永久凍土中。海底天然氣水合物依賴巨厚水層的壓力來維持其固體狀態,其分布可以從海底到海底之下 1000 米 的範圍以內,再往深處則由於地溫升高其固體狀態遭到破壞而難以存在。
天然氣水合物從物理性質來看,天然氣水合物的密度接近並稍低於凍的密度,剪下係數、電解常數和熱傳導率均低於冰。天然氣水合物的聲波傳播速度明顯高於含氣沉積物和飽和水沉積物,中子孔隙度低於飽和水沉積物,這些差別是物探方法識別天然氣水合物的理論基礎。此外,天然氣水合物的毛細管孔隙壓力較高。

可燃冰燃燒方程式為:

CH4+8 H2O+ 2 O2== CO2+ 10 H2O(反應條件為“點燃”)

可燃冰分子結構就像一個一個由若干水分子組成的籠子。

形成可燃冰有三個基本條件:溫度、壓力和原材料。

首先,低溫。可燃冰在0—10℃時生成,超過20℃便會分解。海底溫度一般保持在2—4℃左右;

其次,高壓。可燃冰在0℃時,只需30個大氣壓即可生成,而以海洋的深度,30個大氣壓很容易保證,並且氣壓越大,水合物就越不容易分解。

最後,充足的氣源。海底的有機物沉澱,其中豐富的碳經過生物轉化,可產生充足的氣源。海底的地層是多孔介質,在溫度、壓力、氣源三者都具備的條件下,可燃冰晶體就會在介質的空隙間中生成。

發展歷程

1810年,首次在實驗室發現天然氣水合物。
1934年,前蘇聯在被堵塞的天然氣輸氣管道里發現了天然氣水合物。由於水合物的形成,輸氣管道被堵塞。這一發現引起前蘇聯人對天然氣水合物的重視。
1965年,前蘇聯首次在西西伯利亞永久凍土帶發現天然氣水合物礦藏,並引起多國科學家的注意。
1970年,前蘇聯開始對該天然氣水合物礦床進行商業開採。
1970年,國際深海鑽探計畫(DSDP)在美國東部大陸邊緣的布萊克海台實施深海鑽探,在海底沉積物取心過程中,發現冰冷的沉積物岩心嘶嘶地冒著氣泡,並達數小時。當時的海洋地質學家非常不解。後來才知道,氣泡是水合物分解引起的,他們在海底取到的沉積物岩心其實含有水合物。
1971年,美國學者Stoll等人在深海鑽探岩心中首次發現海洋天然氣水合物,並正式提出“天然氣水合物”概念。
1974年,前蘇聯在黑海1950米水深處發現了天然氣水合物的冰狀晶體樣品。
天然氣水合物1979年,DSDP第66和67航次在墨西哥灣實施深海鑽探,從海底獲得91.24米的天然氣水合物岩心,首次驗證了海底天然氣水合物礦藏的存在。
1981年,DSDP計畫利用“格羅瑪·挑戰者號”鑽探船也從海底取上了3英尺長的水合物岩心。
1992年,大洋鑽探計畫(ODP)第146航次在美國俄勒岡州西部大陸邊緣Cascadia海台取得了天然氣水合物岩心。
1995年,ODP第164航次在美國東部海域布萊克海台實施了一系列深海鑽探,取得了大量水合物岩心,首次證明該礦藏具有商業開發價值。
1997年,大洋鑽探計畫考察隊利用潛水艇在美國南卡羅來納海上的布萊克海台首次完成了水合物的直接測量和海底觀察。同年,ODP在加拿大西海岸胡安-德夫卡洋中脊陸坡區實施了深海鑽探,取得了天然氣水合物岩心。至此,以美國為首的DSDP及其後繼的ODP在10個深海地區發現了大規模天然氣水合物聚集:秘魯海溝陸坡、中美洲海溝陸坡(哥斯大黎加、瓜地馬拉、墨西哥)、美國東南大西洋海域、美洲西部太平洋海域、日本的兩個海域、阿拉斯加近海和墨西哥灣等海域。
1996年和1999年期間,德國和美國科學家通過深潛觀察和抓鬥取樣,在美國俄勒岡州岸外Cascadia海台的海底沉積物中取到嘶嘶冒著氣泡的白色水合物塊狀樣品,該水合物塊可以被點燃,並發出熊熊的火焰。
1998年,日本通過與加拿大合作,在加拿大西北Mackenzie三角洲進行了水合物鑽探,在890~952米深處獲得37米水合物岩心。該鑽井深1150米,是高緯度地區永凍土帶研究氣體水合物的第一口井。
1999年,日本在其靜岡縣御前崎近海挖掘出外觀看起來象濕潤雪團一樣的天然氣水合物。

主要特點

可燃冰燃燒產生的能量比煤、石油、天然氣要多出數十倍,而且燃燒後不產生任何殘渣,避免了最讓人們頭疼的污染問題。科學家們如獲至寶,把可燃冰稱作“屬於未來的能源”。

可燃冰這種寶貝可是來之不易,它的誕生至少要滿足三個條件:第一是溫度不能太高,如果溫度高於20℃,它就會“煙消雲散”,所以,海底的溫度最適合可燃凍的形成;第二是壓力要足夠大,海底越深壓力就越大,可燃冰也就越穩定;第三是要有甲烷氣源,海底古生物屍體的沉積物,被細菌分解後會產生甲烷。所以,可燃冰在世界各大洋中均有分布。中國東海、南海都有相當數量分布。

沉澱物生成的甲烷水合物含量可能還包含了2至10倍的已知的傳統天然氣量。這代表它是未來很有潛力的重要礦物燃料來源。然而,在大多數的礦床地點很可能都過於分散而不利於經濟開採。另外面臨經濟開採的問題還有:偵測可採行的儲藏區、以及從水合物礦床開採甲烷氣體的技術開發。在日本,已進行一項研發計畫,預計要在2016年進行商業規模的開採。

鑑別方法

天然氣水合物可以通過底質沉積物取樣、鑽探取樣和深潛考察等方式直接識別,也可以通過擬海底反射層(BSR)、速度和震幅異常結構、地球化學異常、多波速測深與海底電視攝像等方式間接識別。下面介紹一些間接標誌。
地震標誌 
海洋天然氣水合物存在的主要地震標誌有擬海底反射層(BSR)、振幅變形(空白反射)、速度倒置、速度-振幅異常結構(VAMP)。大規模的甲烷水合物聚集可以通過高電阻率(>100歐米)聲波速度、低體積密度等號數進行直接判讀。
BSR是地震剖面上的一個平行或基本平行於海底、可切過一切層面或斷層的反射界面,天然氣水合物穩定帶之下還常圈閉著大量的游離甲烷氣體,從而導致在地震反射剖面上產生BSR。現已證實,BSR代表的是氣體水合物穩定帶的基底,其上為固態的水合物層段,聲波速率高,其下為游離氣或僅孔隙水充填的沉積物,聲波速率低,因而在地震剖面上形成強的負阻抗反射界面。因此,BSR是由於低滲透率的水合物層與其下大量游離天然氣及飽和水沉積物之間在聲阻抗(或聲波傳播速度)上存在較大差別引起的。因為水合物層的底界面主要受所在海域的地溫梯度控制,往往位於海底以下一定的深度,因此BSR基本平行於海底,被稱為“擬海底反射層”。BSR除被用來識別天然氣水合物的存在和編制水合物分布圖外,還被用來判明天然氣水合物層的頂底界和產狀,計算水合物層深度、厚度和體積。
然而,並不是所有的水合物都存在BSR。在平緩的海底,即使有天然氣水合物,也不易識別出BSR。BSR常常出現在斜坡或地形起伏的海域。另外,也並不是所有的BSR都對應有天然氣水合物。在極少數情況下,其它因素也可能導致BSR.還應注意的是,儘管絕大部分水合物層都位於BSR之上,但並不是所有的水合物層都位於BSR之上,這已被深海鑽探證明。因此,BSR不能被作為天然氣水合物的唯一標誌,應結合其它方法綜合判斷。近幾年,分析和研究地震的速度結構成為該學科領域的前沿。水合物層是高速層,其下飽氣或飽水層是低速層。在速度曲線上,BSR界面處的速度會出現突然降低,表現出明顯的速度異常結構。此外,分析振幅結構也可識別天然氣水合物。相比而言,水合物層是剛性層,其下飽氣或飽水層是塑性層,在振幅曲線上,BSR界面處的振幅會出現突然減表現出明顯的振幅異常結構。這些方法對海底平緩的海域來說,尤其顯的重要。
地球化學標誌
淺層沉積物和底層海水的甲烷濃度異常高、淺層沉積物孔隙水Cl-含量(或礦化度)和δ18O異常高、出現富含重氧的菱鐵礦等,均可作為天然氣水合物的地球化學標誌。
海底地形地貌標誌
在海洋環境中,水合物富集區烴類氣體的滲逸可在海底形成特殊環境和特殊的微地形地貌。天然氣水合物的地貌標誌主要有泄氣窗、甲烷氣苗、泥火山、麻點狀地形、碳酸鹽殼、化學合成生物群等。在最近幾年德國基爾大學 Geomar研究所通過海底觀測,在美國俄勒岡州西部大陸邊緣Cascadia水合物海台就發現了許多不連續分布、大小在5cm2左右的水合物泄氣窗,泄氣窗中甲烷氣苗一股一股地滲出,滲氣速度為每分鐘5公升。在該滲氣流的周圍有微生物、蛤和碳酸鹽殼。

形成原因

海洋生成

可燃冰 可燃冰
有兩種不同種類的海洋存量。最常見的絕大多數(> 99%)都是甲烷包覆於結構一型的包合物,而且一般都在沉澱物的深處才能發現。在此結構下,甲烷中的碳同位素較輕(δ13C 

相關搜尋

熱門詞條

聯絡我們