冷作硬化

冷作硬化

金屬材料在常溫或再結晶溫度以下的加工產生強烈的塑性變形,使晶格扭曲、畸變,晶粒產生剪下、滑移,晶粒被拉長,這些都會使表面層金屬的硬度增加,減少表面層金屬變形的塑性,稱為冷作硬化。金屬在冷態塑性變形中,使金屬的強化指標,如屈服點、硬度等提高,塑性指標如伸長率降低的現象稱為冷作硬化。

基本定義

本目錄涉及專業領域知識,部分內容存在爭議,已由蘭州理工大學土木工程碩士 周宇核實查證。查證內容已提供參考資料,點擊查看詳情。

冷作硬化冷作硬化

鋼材在常溫或再結晶溫度以下的加工產生強烈的塑性變形,使晶格扭曲、畸變,晶粒產生剪下、滑移,晶粒被拉長,這些都會使表面層金屬的硬度增加,減少表面層金屬變形的塑性,稱為冷作硬化。金屬在冷態塑形變形中,使金屬的強化指標,如屈服點、硬度等提高,塑形指標如伸長率降低的現象稱為冷作硬化。

舉明例子

冷軋:把鋼材加熱後控制在再結晶溫度以上進行軋制加工的工藝稱為熱軋。而在再結晶溫度以下,包括常溫下進行扎制加工。

鋼材熱軋:具有良好的塑性,容易成型,成型後鋼材沒有內應力,便於下面工序加工。

鋼材冷軋具有冷加工硬化的特性。由於冷軋具有較好的機械性能,很多直接使用的鋼材都使用冷軋鋼材。

力學現象

普通彈性材料(例如低碳鋼)在拉伸實驗中會經歷4個階段:彈性形變、屈服階段、強化階段、破壞直至斷裂

冷作硬化冷作硬化

彈性形變:即材料所受拉力在彈性極限之內,拉力與材料伸長成正比(胡克定律)。當外力撤去之後,材料會恢復原來的長度。

屈服階段:在外部拉力超過彈性極限之後,材料失去抵抗外力的能力而“屈服”,即在此情況下外力無顯著變化材料依然會伸長。當外力撤去後,材料無法回到原來的長度。

強化階段:材料在內部晶體重新排列後重新獲得抵抗拉伸的能力,但此時的形變為塑性形變,外力撤去後無法回到原來的長度。

破壞階段:材料在過度受力後開始在薄弱部位出現頸縮現象,抵抗拉伸能力急劇下降,直至斷裂。

由於鋼材在從紅熱狀態冷卻後,內部熱應力及晶體排列的緣故,無法使其發揮出最大的抵抗拉伸能力,因此在常溫下,將鋼材拉伸至強化階段後撤去外力。鋼材經過這種加工後,長度增加,直徑縮小,彈性極限上升至相當於原材料強化階段,大大提升了材料的彈性極限。並且使應變率降低,提高了材料的剛度。

相關詞條

相關搜尋

熱門詞條

聯絡我們